skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2148212

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Looking towards 6G wireless systems, frequency bands like the sub-terahertz (sub-THz) band (100 GHz - 300 GHz) are gaining traction for their promises of large available swaths of bandwidth to support the ever-growing data demands. However, challenges with harsh channel conditions and hardware non-linearities in the sub-THz band require robust communication techniques with favorable properties, such as good spectral efficiency and low peak-to-average power ratio (PAPR). Recently, OTFS and its variants have garnered significant attention for their performance in severe conditions (like high delay and Doppler), making it a promising candidate for future communications. In this work, we implement Zak-OTFS for the over-the-air experiments with traditional point pilots and the new spread pilots. Notably, we design our spread pilot waveforms with communications and sensing coexisting in the same radio resources. We define the system model and the signal design for integration onto our state-of-the-art sub-THz wireless testbed. We show successful data transmission over-the-air at 140 GHz and 240 GHz in a variety of signal-to-noise ratio (SNR) conditions. In addition, we demonstrate integrated sensing and communications (ISAC) capabilities and show PAPR improvement of over 5 dB with spread pilots compared to point pilots. 
    more » « less
    Free, publicly-accessible full text available December 13, 2026
  2. Free, publicly-accessible full text available November 1, 2026
  3. Free, publicly-accessible full text available November 1, 2026
  4. Free, publicly-accessible full text available October 1, 2026
  5. Free, publicly-accessible full text available April 24, 2026