skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2149747

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Physics‐based models of the ionosphere‐thermosphere system have been touted as the next big thing in the context of drag modeling and space operations for decades. However, the computational complexity of such models have primarily kept them being used operationally. We recently demonstrated a proof‐of‐concept for developing what we call a reduced order probabilistic emulator (ROPE) for the thermosphere using the thermosphere ionosphere electrodynamics ‐ general circulation model (TIE‐GCM). The methodology uses a page out of dynamical systems theory to first reduce the order of the state using dimensionality reduction and then modeling the temporal dynamics in the reduced state space. The methodology uses an ensemble of temporal dynamic models to provide uncertainty estimates in the prediction. This work focuses on the dimensionality reduction step of the ROPE development process and addresses three limitations of the proof‐of‐concept: (a) extending the altitude upper boundary from 450 km to nearly 1000 km, (b) employing deep learning for nonlinear dimensionality reduction over principal component analysis (PCA) for improved performance during storm periods, and (c) maintaining the spatial resolution of the physical TIE‐GCM model, without down‐sampling, to preserve the spatial scales and variations. Results show overall performance boost over PCA for the high‐resolution and extrapolated data set as well as reduced reconstruction errors during storm‐time conditions. This work represents a major step toward operationalization. 
    more » « less
  2. Abstract Thermospheric density influences the atmospheric drag and is crucial for space missions. This paper introduces a global thermospheric density prediction framework based on a deep evidential method. The proposed framework predicts thermospheric density at the required time and geographic position with given geomagnetic and solar indices. It is called global to differentiate it from existing research that only predicts density along a satellite orbit. Through the deep evidential method, we assimilate data from various sources including solar and geomagnetic conditions, accelerometer‐derived density data, and empirical models including the Jacchia‐Bowman model (JB‐2008) and the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE‐00) model. The framework is investigated on five test cases along various satellites from 2003 to 2015 involving geomagnetic storms with Disturbance Storm Time (Dst) values smaller than −50 . Results show that the proposed framework can generate density with higher accuracy than the two empirical models. It can also obtain reliable uncertainty estimations. Global density estimations at altitudes from 200 to 550 km are also presented and compared with empirical models on both quiet and storm conditions. 
    more » « less
  3. Abstract Space weather indices are used commonly to drive forecasts of thermosphere density, which affects objects in low‐Earth orbit (LEO) through atmospheric drag. One commonly used space weather proxy,F10.7cm, correlates well with solar extreme ultra‐violet (EUV) energy deposition into the thermosphere. Currently, the USAF contracts Space Environment Technologies (SET), which uses a linear algorithm to forecastF10.7cm. In this work, we introduce methods using neural network ensembles with multi‐layer perceptrons (MLPs) and long‐short term memory (LSTMs) to improve on the SET predictions. We make predictions only from historicalF10.7cmvalues. We investigate data manipulation methods (backwards averaging and lookback) as well as multi step and dynamic forecasting. This work shows an improvement over the popular persistence and the operational SET model when using ensemble methods. The best models found in this work are ensemble approaches using multi step or a combination of multi step and dynamic predictions. Nearly all approaches offer an improvement, with the best models improving between 48% and 59% on relative MSE with respect to persistence. Other relative error metrics were shown to improve greatly when ensembles methods were used. We were also able to leverage the ensemble approach to provide a distribution of predicted values; allowing an investigation into forecast uncertainty. Our work found models that produced less biased predictions at elevated and high solar activity levels. Uncertainty was also investigated through the use of a calibration error score metric (CES), our best ensemble reached similar CES as other work. 
    more » « less
  4. Abstract The Mass Spectrometer and Incoherent Scatter radar (MSIS) model family has been developed and improved since the early 1970's. The most recent version of MSIS is the Naval Research Laboratory (NRL) MSIS 2.0 empirical atmospheric model. NRLMSIS 2.0 provides species density, mass density, and temperature estimates as function of location and space weather conditions. MSIS models have long been a popular choice of thermosphere model in the research and operations community alike, but—like many models—does not provide uncertainty estimates. In this work, we develop an exospheric temperature model based in machine learning that can be used with NRLMSIS 2.0 to calibrate it relative to high‐fidelity satellite density estimates directly through the exospheric temperature parameter. Instead of providing point estimates, our model (called MSIS‐UQ) outputs a distribution which is assessed using a metric called the calibration error score. We show that MSIS‐UQ debiases NRLMSIS 2.0 resulting in reduced differences between model and satellite density of 25% and is 11% closer to satellite density than the Space Force's High Accuracy Satellite Drag Model. We also show the model's uncertainty estimation capabilities by generating altitude profiles for species density, mass density, and temperature. This explicitly demonstrates how exospheric temperature probabilities affect density and temperature profiles within NRLMSIS 2.0. Another study displays improved post‐storm overcooling capabilities relative to NRLMSIS 2.0 alone, enhancing the phenomena that it can capture. 
    more » « less
  5. Abstract Machine learning (ML) models are universal function approximators and—if used correctly—can summarize the information content of observational data sets in a functional form for scientific and engineering applications. A benefit to ML over parametric models is that there are no a priori assumptions about particular basis functions which can potentially limit the phenomena that can be modeled. In this work, we develop ML models on three data sets: the Space Environment Technologies High Accuracy Satellite Drag Model (HASDM) density database, a spatiotemporally matched data set of outputs from the Jacchia‐Bowman 2008 Empirical Thermospheric Density Model (JB2008), and an accelerometer‐derived density data set from CHAllenging Minisatellite Payload (CHAMP). These ML models are compared to the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS 2.0) model to study the presence of post‐storm cooling in the middle‐thermosphere. We find that both NRLMSIS 2.0 and JB2008‐ML do not account for post‐storm cooling and consequently perform poorly in periods following strong geomagnetic storms (e.g., the 2003 Halloween storms). Conversely, HASDM‐ML and CHAMP‐ML do show evidence of post‐storm cooling indicating that this phenomenon is present in the original data sets. Results show that density reductions up to 40% can occur 1–3 days post‐storm depending on the location and strength of the storm. 
    more » « less