Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics. Agarose and collagen separately are common biopolymers used in cartilage mechanobiology and mechanotransduction studies but lack features that make them ideal for functional engineered cartilage. In this study, agarose is blended with collagen type I to create hydrogels with final concentrations of 4% w/v or 2% w/v agarose with 2 mg/mL collagen. We hypothesized that the addition of collagen into a high-concentration agarose hydrogel does not diminish mechanical properties. Acellular and cell-laden studies were completed to assess rheologic and compressive properties, contraction, and structural homogeneity in addition to cell proliferation and sulfated glycosaminoglycan production. Over 21 days in culture, cellular 4% agarose–2 mg/mL collagen I hydrogels seeded with primary murine chondrocytes displayed structural and bulk mechanical behaviors that did not significantly alter from 4% agarose-only hydrogels, cell proliferation, and continual glycosaminoglycan production, indicating promise toward the development of an effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies.more » « less
-
Toner, Mehmet; Yarmush, Martin L (Ed.)Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.more » « less
-
Objective: Adherent cell behavior is influ- enced by a complex interplay of factors, including chemical and mechanical signals. In vitro experiments that mimic the mechanical environment experienced by cells in vivo are crucial for understanding cellular behavior and the progression of disease. In this study, we developed and validated a low-cost pneumatically-controlled cell stretcher with independent control of strain in two directions of a membrane, enabling unequal biaxial stretching and real- time microscopy during actuation. Methods: The stretch- ing was achieved by two independent pneumatic channels controlled by electrical signals. We used finite element simulations to compute the membrane’s strain field and particle tracking algorithms based on image processing techniques to validate the strain fields and measure the cell orientation and morphology. Results: The device can supply uniaxial, equibiaxial, and unequal biaxial stretching up to 15% strain in each direction at a frequency of 1Hz, with a strain measurement error of less than 1%. Through live cell imaging, we determined that distinct stretching patterns elicited differing responses and alterations in cell orientation and morphology, particularly in terms of cell length and area. Conclusion: The device successfully pro- vides a large, uniform, and variable strain field for cell experiments, while also enabling real-time, live cell imag- ing. Significance: This scalable, low-cost platform provides mechanical stimulation to cell cultures by independently controlling strains in two directions. This could contribute to a deeper understanding of cellular response to bio- realistic strains and could be useful for future in vitro drug testing platforms.more » « less
-
van Wijnen, Andre (Ed.)Synovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibroblasts within the synovium are responsible for contributing to synovial fluid and can be targeted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine profile. We cyclically loaded SW982 synoviocytes to 0%, 5%, 10%, or 20% strain for three hours at 1 Hz. To assess the impact of substrate stiffness, we compared the 0% strain group to cells grown on tissue culture plastic. We measured the expression of hyaluronan turnover genes, hyaluronan localization within the cell layer, hyaluronan concentration, PRG4 concentration, and the cytokine profile within the media. Our results show that the addition of cyclic loading increased HAS3 expression, but not in a magnitude-dependent response. Hyaluronidase expression was impacted by strain magnitude, which is exemplified by the decrease in hyaluronan concentration due to cyclic loading. We also show that PRG4 concentration is increased at 5% strain, while higher strain magnitude decreases overall PRG4 concentration. Finally, 10% and 20% strain show a distinct, more pro-inflammatory cytokine profile when compared to the unloaded group. Multivariate analysis showed distinct separation between certain strain groups in being able to predict strain group, hyaluronan concentration, and PRG4 concentration from gene expression or cytokine concentration data, highlighting the complexity of the system. Overall, this study shows that cyclic loading can be used tool to modulate the endogenous production of hyaluronan, PRG4, and cytokines from synovial fibroblasts.more » « less
-
Finite element models of the knee can be used to identify regions at risk of mechanical failure in studies of osteoarthritis. Models of the knee often implement joint geometry obtained from magnetic resonance imaging (MRI) or gait kinematics from motion capture to increase model specificity for a given subject. However, differences exist in cartilage material properties regionally as well as between subjects. This paper presents a method to create subject-specific finite element models of the knee that assigns cartilage material properties from T2 relaxometry. We compared our T2-refined model to identical models with homogeneous material properties. When tested on three subjects from the Osteoarthritis Initiative data set, we found the T2-refined models estimated higher principal stresses and shear strains in most cartilage regions and corresponded better to increases in KL grade in follow-ups compared to their corresponding homogeneous material models. Measures of cumulative stress within regions of a T2-refined model also correlated better with the region's cartilage morphology MRI Osteoarthritis Knee Score as compared with the homogeneous model. We conclude that spatially heterogeneous T2-refined material properties improve the subject-specificity of finite element models compared to homogeneous material properties in osteoarthritis progression studies. Statement of Clinical Significance: T2-refined material properties can improve subject-specific finite element model assessments of cartilage degeneration.more » « less
An official website of the United States government
