skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Finite element modeling with subject‐specific mechanical properties to assess knee osteoarthritis initiation and progression
Finite element models of the knee can be used to identify regions at risk of mechanical failure in studies of osteoarthritis. Models of the knee often implement joint geometry obtained from magnetic resonance imaging (MRI) or gait kinematics from motion capture to increase model specificity for a given subject. However, differences exist in cartilage material properties regionally as well as between subjects. This paper presents a method to create subject-specific finite element models of the knee that assigns cartilage material properties from T2 relaxometry. We compared our T2-refined model to identical models with homogeneous material properties. When tested on three subjects from the Osteoarthritis Initiative data set, we found the T2-refined models estimated higher principal stresses and shear strains in most cartilage regions and corresponded better to increases in KL grade in follow-ups compared to their corresponding homogeneous material models. Measures of cumulative stress within regions of a T2-refined model also correlated better with the region's cartilage morphology MRI Osteoarthritis Knee Score as compared with the homogeneous model. We conclude that spatially heterogeneous T2-refined material properties improve the subject-specificity of finite element models compared to homogeneous material properties in osteoarthritis progression studies. Statement of Clinical Significance: T2-refined material properties can improve subject-specific finite element model assessments of cartilage degeneration.  more » « less
Award ID(s):
2149946
NSF-PAR ID:
10329835
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Orthopaedic Research
ISSN:
0736-0266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Healthy articular cartilage presents structural gradients defined by distinct zonal patterns through the thickness, which may be disrupted in the pathogenesis of several disorders. Analysis of textural patterns using quantitative MRI data may identify structural gradients of healthy or degenerating tissue that correlate with early osteoarthritis (OA).

    Purpose

    To quantify spatial gradients and patterns in MRI data, and to probe new candidate biomarkers for early severity of OA.

    Study Type

    Retrospective study.

    Subjects

    Fourteen volunteers receiving total knee replacement surgery (eight males/two females/four unknown, average age ± standard deviation: 68.1 ± 9.6 years) and 10 patients from the OA Initiative (OAI) with radiographic OA onset (two males/eight females, average age ± standard deviation: 57.7 ± 9.4 years; initial Kellgren‐Lawrence [KL] grade: 0; final KL grade: 3 over the 10‐year study).

    Field Strength/Sequence

    3.0‐T and 14.1‐T, biomechanics‐based displacement‐encoded imaging, fast spin echo, multi‐slice multi‐echoT2mapping.

    Assessment

    We studied structure and strain in cartilage explants from volunteers receiving total knee replacement, or structure in cartilage of OAI patients with progressive OA. We calculated spatial gradients of quantitative MRI measures (eg, T2) normal to the cartilage surface to enhance zonal variations. We compared gradient values against histologically OA severity, conventional relaxometry, and/or KL grades.

    Statistical Tests

    Multiparametric linear regression for evaluation of the relationship between residuals of the mixed effects models and histologically determined OA severity scoring, with a significance threshold atα = 0.05.

    Results

    Gradients of individual relaxometry and biomechanics measures significantly correlated with OA severity, outperforming conventional relaxometry and strain metrics. In human explants, analysis of spatial gradients provided the strongest relationship to OA severity (R2 = 0.627). Spatial gradients of T2 from OAI data identified variations in radiographic (KL Grade 2) OA severity in single subjects, while conventional T2 alone did not.

    Data Conclusion

    Spatial gradients of quantitative MRI data may improve the predictive power of noninvasive imaging for early‐stage degeneration.

    Evidence Level

    1

    Technical Efficacy

    Stage 1

     
    more » « less
  2. Background

    Deep learning (DL)‐based automatic segmentation models can expedite manual segmentation yet require resource‐intensive fine‐tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine‐tuning is not well characterized.

    Purpose

    Evaluate the generalizability of DL‐based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population.

    Study Type

    Retrospective based on prospectively acquired data.

    Population

    Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females).

    Field Strength/Sequence

    A 3‐T, quantitative double‐echo steady state (qDESS).

    Assessment

    Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)‐DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage.

    Statistical Tests

    Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank‐sum tests, root‐mean‐squared error‐coefficient‐of‐variation to quantify manual vs. automatic T2 and volume variations. Bland–Altman plots for manual vs. automatic T2 agreement. APvalue < 0.05 was considered statistically significant.

    Results

    DSCs for the qDESS‐trained model, 0.79–0.93, were higher than those for the OAI‐DESS‐trained model, 0.59–0.79. T2 and volume CCCs for the qDESS‐trained model, 0.75–0.98 and 0.47–0.95, were higher than respective CCCs for the OAI‐DESS‐trained model, 0.35–0.90 and 0.13–0.84. Bland–Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS‐trained model, ±2.4 msec and ±4.0 msec, than the OAI‐DESS‐trained model, ±4.4 msec and ±5.2 msec.

    Data Conclusion

    The qDESS‐trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population.

    Evidence Level

    1

    Technical Efficacy

    Stage 1

     
    more » « less
  3. Osteoarthritis of the knee is increasingly prevalent as our population ages, representing an increasing financial burden, and severely impacting quality of life. The invasiveness of in vivo procedures and the high cost of cadaveric studies has left computational tools uniquely suited to study knee biomechanics. Developments in deep learning have great potential for efficiently generating large-scale datasets to enable researchers to perform population-sized investigations, but the time and effort associated with producing robust hexahedral meshes has been a limiting factor in expanding finite element studies to encompass a population. Here we developed a fully automated pipeline capable of taking magnetic resonance knee images and producing a working finite element simulation. We trained an encoder-decoder convolutional neural network to perform semantic image segmentation on the Imorphics dataset provided through the Osteoarthritis Initiative. The Imorphics dataset contained 176 image sequences with varying levels of cartilage degradation. Starting from an open-source swept-extrusion meshing algorithm, we further developed this algorithm until it could produce high quality meshes for every sequence and we applied a template-mapping procedure to automatically place soft-tissue attachment points. The meshing algorithm produced simulation-ready meshes for all 176 sequences, regardless of the use of provided (manually reconstructed) or predicted (automatically generated) segmentation labels. The average time to mesh all bones and cartilage tissues was less than 2 min per knee on an AMD Ryzen 5600X processor, using a parallel pool of three workers for bone meshing, followed by a pool of four workers meshing the four cartilage tissues. Of the 176 sequences with provided segmentation labels, 86% of the resulting meshes completed a simulated flexion-extension activity. We used a reserved testing dataset of 28 sequences unseen during network training to produce simulations derived from predicted labels. We compared tibiofemoral contact mechanics between manual and automated reconstructions for the 24 pairs of successful finite element simulations from this set, resulting in mean root-mean-squared differences under 20% of their respective min-max norms. In combination with further advancements in deep learning, this framework represents a feasible pipeline to produce population sized finite element studies of the natural knee from subject-specific models. 
    more » « less
  4. Abstract

    Articular cartilage (AC) is a load-bearing tissue that covers long bones in synovial joints. The biphasic/poroelastic mechanical properties of AC help it to protect joints by distributing loads, absorbing impact forces, and reducing friction. Unfortunately, alterations in these mechanical properties adversely impact cartilage function and precede joint degeneration in the form of osteoarthritis (OA). Thus, understanding what factors regulate the poroelastic mechanical properties of cartilage is of great scientific and clinical interest. Transgenic mouse models provide a valuable platform to delineate how specific genes contribute to cartilage mechanical properties. However, the poroelastic mechanical properties of murine articular cartilage are challenging to measure due to its small size (thickness ∼ 50 microns). In the current study, our objective was to test whether the poroelastic mechanical properties of murine articular cartilage can be determined based solely on time-dependent cell death measurements under constant loading conditions. We hypothesized that in murine articular cartilage subjected to constant, sub-impact loading from an incongruent surface, cell death area and tissue strain are closely correlated. We further hypothesized that the relationship between cell death area and tissue strain can be used—in combination with inverse finite element modeling—to compute poroelastic mechanical properties. To test these hypotheses, murine cartilage-on-bone explants from different anatomical locations were subjected to constant loading conditions by an incongruent surface in a custom device. Cell death area increased over time and scaled linearly with strain, which rose in magnitude over time due to poroelastic creep. Thus, we were able to infer tissue strain from cell death area measurements. Moreover, using tissue strain values inferred from cell death area measurements, we applied an inverse finite element modeling procedure to compute poroelastic material properties and acquired data consistent with previous studies. Collectively, our findings demonstrate in the key role poroelastic creep plays in mediating cell survival in mechanically loaded cartilage and verify that cell death area can be used as a surrogate measure of tissue strain that enables determination of murine cartilage mechanical properties.

     
    more » « less
  5. In the medical sector, three-dimensional (3D) images are commonly used like computed tomography (CT) and magnetic resonance imaging (MRI). The 3D MRI is a non-invasive method of studying the soft-tissue structures in a knee joint for osteoarthritis studies. It can greatly improve the accuracy of segmenting structures such as cartilage, bone marrow lesion, and meniscus by identifying the bone structure first. U-net is a convolutional neural network that was originally designed to segment the biological images with limited training data. The input of the original U-net is a single 2D image and the output is a binary 2D image. In this study, we modified the U-net model to identify the knee bone structures using 3D MRI, which is a sequence of 2D slices. A fully automatic model has been proposed to detect and segment knee bones. The proposed model was trained, tested, and validated using 99 knee MRI cases where each case consists of 160 2D slices for a single knee scan. To evaluate the model’s performance, the similarity, dice coefficient (DICE), and area error metrics were calculated. Separate models were trained using different knee bone components including tibia, femur, patella, as well as a combined model for segmenting all the knee bones. Using the whole MRI sequence (160 slices), the method was able to detect the beginning and ending bone slices first, and then segment the bone structures for all the slices in between. On the testing set, the detection model accomplished 98.79% accuracy and the segmentation model achieved DICE 96.94% and similarity 93.98%. The proposed method outperforms several state-of-the-art methods, i.e., it outperforms U-net by 3.68%, SegNet by 14.45%, and FCN-8 by 2.34%, in terms of DICE score using the same dataset. 
    more » « less