- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Song, Houbing (3)
-
Myers, Rodman J. (2)
-
Perera, Sirani M. (2)
-
Byassee, Kyle (1)
-
Dartmann, Guido (1)
-
Fazlic, Lejla Begic (1)
-
Huang, David (1)
-
Liu, Yongxin (1)
-
Madanayake, Arjuna (1)
-
McLewee, Grace (1)
-
Niu, Shuteng (1)
-
Renkhoff, Justus (1)
-
Sullivan, Killian (1)
-
Tan, Wenkai (1)
-
Velasquez, Alvaro (1)
-
Wang, Jian (1)
-
Wang, William Yichen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The advancement of wireless networking has significantly enhanced beamforming capabilities in Autonomous Unmanned Aerial Systems (AUAS). This paper presents a simple and efficient classical algorithm to route a collection of AUAS or drone swarms extending our previous work on AUAS. The algorithm is based on the sparse factorization of frequency Vandermonde matrices that correspond to each drone, and its entries are determined through spatiotemporal data of drones in the AUAS. The algorithm relies on multibeam beamforming, making it suitable for large-scale AUAS networking in wireless communications. We show a reduction in the arithmetic and time complexities of the algorithm through theoretical and numerical results. Finally, we also present an ML-based AUAS routing algorithm using the classical AUAS algorithm and feed-forward neural networks. We compare the beamformed signals of the ML-based AUAS routing algorithm with the ground truth signals to minimize the error between them. The numerical error results show that the ML-based AUAS routing algorithm enhances the accuracy of the routing. This error, along with the numerical and theoretical results for over 100 drones, provides the basis for the scalability of the proposed ML-based AUAS algorithms for large-scale deployments.more » « less
-
Renkhoff, Justus; Tan, Wenkai; Velasquez, Alvaro; Wang, William Yichen; Liu, Yongxin; Wang, Jian; Niu, Shuteng; Fazlic, Lejla Begic; Dartmann, Guido; Song, Houbing (, 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC))
-
Integrating Communication and Sensor Arrays to Model and Navigate Autonomous Unmanned Aerial SystemsPerera, Sirani M.; Myers, Rodman J.; Sullivan, Killian; Byassee, Kyle; Song, Houbing; Madanayake, Arjuna (, Electronics)The emerging concept of drone swarms creates new opportunities with major societal implications. However, future drone swarm applications and services pose new communications and sensing challenges, particularly for collaborative tasks. To address these challenges, in this paper, we integrate sensor arrays and communication to propose a mathematical model to route a collection of autonomous unmanned aerial systems (AUAS), a so-called drone swarm or AUAS swarm, without having a base station of communication but communicating with each other using multiple spatio-temporal data. The theories of structured matrices, concepts in multi-beam beamforming, and sensor arrays are utilized to propose a swarm routing algorithm. We address the routing algorithm’s computational and arithmetic complexities, precision, and reliability. We measure bit-error-rate (BER) based on the number of elements in sensor arrays and beamformed output of the members of the swarm to authenticate and secure the routing for the decentralized AUAS networking. The proposed model has the potential to enable future drone swarm applications and services. Finally, we discuss future work on obtaining a machine-learning-based low-cost drone swarm routing algorithm.more » « less
An official website of the United States government
