Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            For any Kawamata log terminal (klt) singularity and any minimizer of its normalized volume function, we prove that the associated graded ring is always finitely generated, as conjectured by Chi Li. As a consequence, we complete the last step of establishing the Stable Degeneration Conjecture proposed by Chi Li and the first named author for an arbitrary klt singularity.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            We extend the algebraic K-stability theory to projective klt pairs with a big anticanonical class. While in general such a pair could behave pathologically, it is observed in this note that the K-semistability condition will force them to have a klt anticanonical model, whose stability property is the same as that of the original pair.more » « less
- 
            We prove two new results on the K K -polystability of Q \mathbb {Q} -Fano varieties based on purely algebro-geometric arguments. The first one says that any K K -semistable log Fano cone has a special degeneration to a uniquely determined K K -polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, K K -polystability is equivalent to equivariant K K -polystability, that is, to check K K -polystability, it is sufficient to check special test configurations which are equivariant under the torus action.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available