skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2153115

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For any Kawamata log terminal (klt) singularity and any minimizer of its normalized volume function, we prove that the associated graded ring is always finitely generated, as conjectured by Chi Li. As a consequence, we complete the last step of establishing the Stable Degeneration Conjecture proposed by Chi Li and the first named author for an arbitrary klt singularity. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. We extend the algebraic K-stability theory to projective klt pairs with a big anticanonical class. While in general such a pair could behave pathologically, it is observed in this note that the K-semistability condition will force them to have a klt anticanonical model, whose stability property is the same as that of the original pair. 
    more » « less
  3. Abstract We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits a Kähler–Ricci soliton when the ground field . 
    more » « less
  4. We prove two new results on the K K -polystability of Q \mathbb {Q} -Fano varieties based on purely algebro-geometric arguments. The first one says that any K K -semistable log Fano cone has a special degeneration to a uniquely determined K K -polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, K K -polystability is equivalent to equivariant K K -polystability, that is, to check K K -polystability, it is sufficient to check special test configurations which are equivariant under the torus action. 
    more » « less