Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With ever-increasing execution scale of the high performance computing (HPC) applications, vast amount of data are being produced by scientific research every day. Error-bounded lossy compression has been considered a very promising solution to address the big-data issue for scientific applications, because it can significantly reduce the data volume with low time cost meanwhile allowing users to control the compression errors with a specified error bound. The existing error-bounded lossy compressors, however, are all developed based on inflexible designs or compression pipelines, which cannot adapt to diverse compression quality requirements/metrics favored by different application users. In this paper, we propose a novel dynamic quality metric oriented error-bounded lossy compression framework, namely QoZ. The detailed contribution is three fold. (1) We design a novel highly-parameterized multi-level interpolation-based data predictor, which can significantly improve the overall compression quality with the same compressed size. (2) We design the error bounded lossy compression framework QoZ based on the adaptive predictor, which can auto-tune the critical parameters and optimize the compression result according to user-specified quality metrics during online compression. (3) We evaluate QoZ carefully by comparing its compression quality with multiple state-of-the-arts on various real-world scientific application datasets. Experiments show that, compared with the second best lossy compressor, QoZ can achieve up to 70% compression ratio improvement under the same error bound, up to 150% compression ratio improvement under the same PSNR, or up to 270% compression ratio improvement under the same SSIM.more » « less
-
The objective of this work is to develop error-bounded lossy compression methods to preserve topological features in 2D and 3D vector fields. Specifically, we explore the preservation of critical points in piecewise linear and bilinear vector fields. We define the preservation of critical points as, without any false positive, false negative, or false type in the decompressed data, (1) keeping each critical point in its original cell and (2) retaining the type of each critical point (e.g., saddle and attracting node). The key to our method is to adapt a vertex-wise error bound for each grid point and to compress input data together with the error bound field using a modified lossy compressor. Our compression algorithm can be also embarrassingly parallelized for large data handling and in situ processing. We benchmark our method by comparing it with existing lossy compressors in terms of false positive/negative/type rates, compression ratio, and various vector field visualizations with several scientific applications.more » « less
-
The increase of computer processing speed is significantly outpacing improvements in network and storage bandwidth, leading to the big data challenge in modern science, where scientific applications can quickly generate much more data than that can be transferred and stored. As a result, big scientific data must be reduced by a few orders of magnitude while the accuracy of the reduced data needs to be guaranteed for further scientific explorations. Moreover, scientists are often interested in some specific spatial/temporal regions in their data, where higher accuracy is required. The locations of the regions requiring high accuracy can sometimes be prescribed based on application knowledge, while other times they must be estimated based on general spatial/temporal variation. In this paper, we develop a novel multilevel approach which allows users to impose region-wise compression error bounds. Our method utilizes the byproduct of a multilevel compressor to detect regions where details are rich and we provide the theoretical underpinning for region-wise error control. With spatially varying precision preservation, our approach can achieve significantly higher compression ratios than single-error bounded compression approaches and control errors in the regions of interest. We conduct the evaluations on two climate use cases – one targeting small-scale, node features and the other focusing on long, areal features. For both use cases, the locations of the features were unknown ahead of the compression. By selecting approximately 16% of the data based on multi-scale spatial variations and compressing those regions with smaller error tolerances than the rest, our approach improves the accuracy of post-analysis by approximately 2 × compared to single-error-bounded compression at the same compression ratio. Using the same error bound for the region of interest, our approach can achieve an increase of more than 50% in overall compression ratio.more » « less
An official website of the United States government
