skip to main content


Search for: All records

Award ID contains: 2153502

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Serverless computing has been favored by users and infrastructure providers from various industries, including online services and scientific computing. Users enjoy its auto-scaling and ease-of-management, and providers own more control to optimize their service. However, existing serverless platforms still require users to pre-define resource allocations for their functions, leading to frequent misconfiguration by inexperienced users in practice. Besides, functions' varying input data further escalate the gap between their dynamic resource demands and static allocations, leaving functions either over-provisioned or under-provisioned. This paper presents Libra, a safe and timely resource harvesting framework for multi-node serverless clusters. Libra makes precise harvesting decisions to accelerate function invocations with harvested resources and jointly improve resource utilization by profiling dynamic resource demands and availability proactively. Experiments on OpenWhisk clusters with real-world workloads show that Libra reduces response latency by 39% and achieves 3X resource utilization compared to state-of-the-art solutions. 
    more » « less
    Free, publicly-accessible full text available August 7, 2024
  2. Serverless computing automates fine-grained resource scaling and simplifies the development and deployment of online services with stateless functions. However, it is still non-trivial for users to allocate appropriate resources due to various function types, dependencies, and input sizes. Misconfiguration of resource allocations leaves functions either under-provisioned or over-provisioned and leads to continuous low resource utilization. This paper presents Freyr, a new resource manager (RM) for serverless platforms that maximizes resource efficiency by dynamically harvesting idle resources from over-provisioned functions to under-provisioned functions. Freyr monitors each function’s resource utilization in real-time, detects over-provisioning and under-provisioning, and learns to harvest idle resources safely and accelerates functions efficiently by applying deep reinforcement learning algorithms along with a safeguard mechanism. We have implemented and deployed a Freyr prototype in a 13-node Apache OpenWhisk cluster. Experimental results show that 38.8% of function invocations have idle resources harvested by Freyr, and 39.2% of invocations are accelerated by the harvested resources. Freyr reduces the 99th-percentile function response latency by 32.1% compared to the baseline RMs. 
    more » « less