- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Ilievski, Filip (4)
-
Sourati, Zhivar (3)
-
Jiang, Yifan (2)
-
Mermoud, Alain (2)
-
Sandlin, Hông-Ân (2)
-
Deshpande, Darshan (1)
-
Ma, Kaixin (1)
-
Prasanna_Venkatesh, Vishnu Priya (1)
-
Rawlani, Himanshu (1)
-
Sommerauer, Pia (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jiang, Yifan; Ilievski, Filip; Ma, Kaixin (, IOS Press Ebooks)
-
Sourati, Zhivar; Ilievski, Filip; Sandlin, Hông-Ân; Mermoud, Alain (, International Joint Conferences on Artificial Intelligence Organization)The ease and speed of spreading misinformation and propaganda on the Web motivate the need to develop trustworthy technology for detecting fallacies in natural language arguments. However, state-of-the-art language modeling methods exhibit a lack of robustness on tasks like logical fallacy classification that require complex reasoning. In this paper, we propose a Case-Based Reasoning method that classifies new cases of logical fallacy by language-modeling-driven retrieval and adaptation of historical cases. We design four complementary strategies to enrich input representation for our model, based on external information about goals, explanations, counterarguments, and argument structure. Our experiments in in-domain and out-of-domain settings indicate that Case-Based Reasoning improves the accuracy and generalizability of language models. Our ablation studies suggest that representations of similar cases have a strong impact on the model performance, that models perform well with fewer retrieved cases, and that the size of the case database has a negligible effect on the performance. Finally, we dive deeper into the relationship between the properties of the retrieved cases and the model performance.more » « less
-
Sourati, Zhivar; Prasanna_Venkatesh, Vishnu Priya; Deshpande, Darshan; Rawlani, Himanshu; Ilievski, Filip; Sandlin, Hông-Ân; Mermoud, Alain (, Knowledge-Based Systems)
An official website of the United States government

Full Text Available