skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2153746

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor map is cut out by the orbit of finitely many equations and inequalities under the action of $$(\textrm{SL}_{2}(\mathbb{R}))^{n} \rtimes S_{n}$$. We also study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we give examples to show for any field $$\mathbb{F}$$, there is no finite set of equations whose orbit under $$(\textrm{SL}_{2}(\mathbb{F}))^{n} \rtimes S_{n}$$ cuts out the image of $$n\times n$$ matrices over $${\mathbb{F}}$$ under the principal minor map for every $$n$$. 
    more » « less
  2. Free, publicly-accessible full text available January 1, 2026