- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Vinzant, Cynthia (5)
-
Alon, Lior (3)
-
Al_Ahmadieh, Abeer (1)
-
Cohen, Alex (1)
-
Connelly, Erin (1)
-
Kummer, Mario (1)
-
Kurasov, Pavel (1)
-
Thomas, Rekha R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor map is cut out by the orbit of finitely many equations and inequalities under the action of $$(\textrm{SL}_{2}(\mathbb{R}))^{n} \rtimes S_{n}$$. We also study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we give examples to show for any field $$\mathbb{F}$$, there is no finite set of equations whose orbit under $$(\textrm{SL}_{2}(\mathbb{F}))^{n} \rtimes S_{n}$$ cuts out the image of $$n\times n$$ matrices over $${\mathbb{F}}$$ under the principal minor map for every $$n$$.more » « less
-
Alon, Lior; Kummer, Mario; Kurasov, Pavel; Vinzant, Cynthia (, Inventiones mathematicae)Free, publicly-accessible full text available January 1, 2026
-
Alon, Lior; Vinzant, Cynthia (, Revista Matemática Iberoamericana)
-
Connelly, Erin; Thomas, Rekha R; Vinzant, Cynthia (, Advances in geometry)
-
Alon, Lior; Cohen, Alex; Vinzant, Cynthia (, Journal of Functional Analysis)
An official website of the United States government

Full Text Available