Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 19, 2025
- 
            Tor M. Aamodt; Natalie D. Enright Jerger; Michael M. Swift (Ed.)System calls are a critical building block in many serious security attacks, such as control-flow hijacking and privilege escalation attacks. Security-sensitive system calls (e.g., execve, mprotect), especially play a major role in completing attacks. Yet, few defense efforts focus to ensure their legitimate usage, allowing attackers to maliciously leverage system calls in attacks. In this paper, we propose a novel System Call Integrity, which enforces the correct use of system calls throughout runtime. We propose three new contexts enforcing (1) which system call is called and how it is invoked (Call Type), (2) how a system call is reached (Control Flow), and (3) that arguments are not corrupted (Argument Integrity). Our defense mechanism thwarts attacks by breaking the critical building block in their attack chains. We implement Bastion, as a compiler and runtime monitor system, to demonstrate the efficacy of the three system call contexts. Our security case study shows that Bastion can effectively stop all the attacks including real-world exploits and recent advanced attack strategies. Deploying Bastion on three popular system call-intensive programs, NGINX, SQLite, and vsFTPd, we show Bastion is secure and practical, demonstrating overhead of 0.60%, 2.01%, and 1.65%, respectivelymore » « less
- 
            Ashvin Goel; Dalit Naor (Ed.)Byte-addressable non-volatile memory (NVM) allows programs to directly access storage using memory interface without going through the expensive conventional storage stack. However, direct access to NVM makes the NVM data vulnerable to software bugs and hardware errors. This issue is critical because, unlike DRAM, corrupted data can persist forever, even after the system restart. Albeit the plethora of research on NVM programs and systems, there is little focus on protecting NVM data from software bugs and hardware errors. In this paper, we propose TENET, a new NVM programming framework, which guarantees memory safety and fault tolerance to protect NVM data against software bugs and hardware errors. TENET provides the popular persistent transactional memory (PTM) programming model. TENET leverages the concurrency guarantees (i.e., ACID properties) of PTM to provide performant and cost-efficient memory safety and fault tolerance. Our evaluations show that TENET offers an enhanced protection scope at a modest performance overhead and storage cost as compared to other PTMs with partial or no memory safety and fault tolerance support.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available