Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We report a novel ultra-thin metalens design based on photonic crystal slab (PCS) resonance modes. We experimentally verified with a metalens structure based on amorphous silicon on a quartz material platform by implementing the optical guided resonance on the PCS. The PCS metalens designs feature an ultra-thin device layer of about 160 nm at an operation wavelength of 940 nm. A full 2π transmission phase transition is realized by varying the air hole sizes at the design wavelength. Metalens devices with different phase change gradients were designed and fabricated to achieve different NAs. A maximum of 86.4% focusing efficiency is achieved. Imaging capabilities are characterized, and clear images are observed within the field of view. The PC resonance-based phase modulation design can be applied to optical beam manipulation, phase plate design, imaging, and laser beam formation applications.more » « less
-
Reconfigurable metasurfaces have been pursued intensively in recent years for the ability to modulate the light after fabrication. However, the optical performances of these devices are limited by the efficiency, actuation response speed and mechanical control for reconfigurability. In this paper, we propose a fast tunable optical absorber based on the critical coupling of resonance mode to absorptive medium and the plasma dispersion effect of free carriers in semiconductor. The tunable absorber structure includes a single-layer or bi-layer silicon photonic crystal slab (PCS) to induce a high-Q optical resonance, a monolayer graphene as the absorption material, and bottom reflector to remove transmission. By modulating the refractive index of PCS via the plasma dispersion of the free carrier, the critical coupling condition is shifted in spectrum, and the device acquires tuning capability between perfect absorption and total reflection of the incident monochromatic light beam. Simulation results show that, with silicon index change of 0.015, the tunable absorption of light can achieve the reflection/absorption switching, and full range of reflection phase control is feasible in the over coupling region. The proposed reconfigurable structure has potential applications in remote sensing, free-space communications, LiDAR, and imaging.more » « less
An official website of the United States government
