- Award ID(s):
- 2154109
- PAR ID:
- 10446773
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 26
- ISSN:
- 1094-4087
- Page Range / eLocation ID:
- 47612
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we theoretically demonstrate a dual-band independently tunable absorber consisting of a stacked graphene nanodisk and graphene layer with nanohole structure, and a metal reflector spaced by insulator layers. This structure exhibits a dipole resonance mode in graphene nanodisks and a quadrupole resonance mode in the graphene layer with nanoholes, which results in the enhancement of absorption over a wide range of incident angles for both TE and TM polarizations. The peak absorption wavelength is analyzed in detail for different geometrical parameters and the Fermi energy levels of graphene. The results show that both peaks of the absorber can be tuned dynamically and simultaneously by varying the Fermi energy level of graphene nanodisks and graphene layer with nanoholes structure. In addition, one can also independently tune each resonant frequency by only changing the Fermi energy level of one graphene layer. Such a device could be used as a chemical sensor, detector or multi-band absorber.more » « less
-
null (Ed.)Abstract Actively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered “local” in that their operation depends on the responses of individual meta-units. In contrast, “nonlocal” metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive-index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront shaping requires neither unusual materials and fabrication nor active control of individual meta-units.more » « less
-
Abstract This paper explores nanoscale energy sensors and absorber metamaterials that can be used in various applications, such as solar cells and infrared detectors. It is possible to gain highly efficient and adjustable energy absorption, creating absorber metamaterials at the nanoscale that enhance the performance of solar cells. These metamaterials are based on molecular spintronics devices (MSD) and magnetic tunnel junctions (MTJ). The pillar shaped MTJs are made of two ferromagnetic metals separated by an insulating barrier, such as aluminum oxide (AlOx). The manufacturing process includes photoresist spin coating on a silicon wafer, photolithography, thin film sputtering, and liftoff. Following fabrication, the top and bottom electrodes are covalently bonded by a single molecule magnet (SMM) on the exposed side edges for strong magnetic coupling that changes the magnetic properties of both ferromagnetic metals. This study has considered different thin film deposition materials, configurations, and thicknesses. Magnetic field resonance and light reflectance measurements have been performed before and after molecule attachment to understand the molecule effect on the metamaterials’ energy absorption behavior. The Electron Spin Resonance (ESR) test revealed that the devices shifted following molecule attachment in both acoustic and optical modes. Moreover, due to molecule attachment, there have been significant alterations in the MTJ’s electromagnetic wave absorption characteristics with about 49% less reflectance. This metamaterial has various potential applications in aerospace, renewable energy, sensing, imaging, and communication. It is also a cheaper alternative to traditional solar cells and can inspire the development of smart metamaterials with selective absorption and tunable response.
-
Recent progress in the Valley Hall insulator has demonstrated a nontrivial topology property due to the distinct valley index in 2D semiconductor systems. In this work, we propose a highly tunable topological phase transition based on valley photonic crystals. The topological phase transition is realized by the inversion symmetry broken due to the refractive index change of structures consisting of optical phase change material (OPCM) with thermal excitation of different sites in a honeycomb lattice structure. Besides, simulations of light propagation at sharp corners and pseudo-spin photon coupling are conducted to quantitatively examine the topological protection. Compared with other electro-optical materials based on reconfigurable topological photonics, a wider bandwidth and greater tunability of both central bandgap frequency and topological phase transition can happen in the proposed scheme. Our platform has great potential in practical applications in lasing, light sensing, and high-contrast tunable optical filters.
-
Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to
angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.