Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A millimetric droplet may bounce and self-propel across the surface of a vertically vibrating liquid bath, guided by the slope of its accompanying Faraday wave field. The ‘walker’, consisting of a droplet dressed in a quasi-monochromatic wave form, is a spatially extended object that exhibits many phenomena previously thought exclusive to the quantum realm. While the walker dynamics can be remarkably complex, steady and periodic states arise in which the energy added by the bath vibration necessarily balances that dissipated by viscous effects. The system energetics may then be characterised in terms of the exchange between the bouncing droplet and its guiding or ‘pilot’ wave. We here characterise this energy exchange by means of a theoretical investigation into the dynamics of the pilot-wave system when time-averaged over one bouncing period. Specifically, we derive simple formulae characterising the dependence of the droplet’s gravitational potential energy and wave energy on the droplet speed. Doing so makes clear the partitioning between the gravitational, wave and kinetic energies of walking droplets in a number of steady, periodic and statistically steady dynamical states. We demonstrate that this partitioning depends exclusively on the ratio of the droplet speed to its speed limit.more » « lessFree, publicly-accessible full text available April 10, 2026
-
The Kapitza-Dirac effect is the diffraction of quantum particles by a standing wave of light. We here report an analogous phenomenon in pilot-wave hydrodynamics, wherein droplets walking across the surface of a vibrating liquid bath are deflected by a standing Faraday wave. We show that, in certain parameter regimes, the statistical distribution of the droplet deflection angles reveals a diffraction pattern reminiscent of that observed in the Kapitza-Dirac effect. Through experiments and simulations, we show that the diffraction pattern results from the complex interactions of the droplets with the standing wave. Our study highlights nonresonant effects associated with the detuning of the droplet bouncing and the bath vibration, which are shown to lead to drop speed variations and droplet sorting according to the droplet's phase of impact. We discuss the similarities and differences between our hydrodynamic system and the discrete and continuum interpretations of the Kapitza-Dirac effect, and introduce the notion of ponderomotive effects in pilot-wave hydrodynamics. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
We present a number of fresh perspectives on pilot-wave hydrodynamics, the field initiated in 2005 by Couder and Fort's discovery that millimetric droplets self-propelling along the surface of a vibrating bath can capture certain features of quantum systems. A recurring theme will be that pilot-wave hydrodynamics furnishes a classical framework for reproducing many quantum phenomena and allows one to rationalize such phenomena mechanistically, from a local realist perspective, obviating the need to appeal to quantum nonlocality. The distinction is drawn between hydrodynamic pilot-wave theory and its quantum counterparts, Bohmian mechanics, the Bohm–Vigier stochastic pilot-wave theory, and de Broglie's theory of the double-solution. Each of these quantum predecessors provide a valuable touchstone as we take the physical picture engendered in the walking droplets and extend it into the quantum realm via theoretical modeling. Emphasis is given to recent developments in the field, both experimental and conceptual, and to forecasting potentially fruitful new directions.more » « less
-
The relation between de Broglie’s double-solution approach to quantum dynamics and the hydrodynamic pilot-wave system has motivated a number of recent revisitations and extensions of de Broglie’s theory. Building upon these recent developments, we here introduce a rich family of pilot-wave systems, with a view to reformulating and studying de Broglie’s double-solution program in the modern language of classical field theory. Notably, the entire family is local and Lorentz-invariant, follows from a variational principle, and exhibits time-invariant, two-way coupling between particle and pilot-wave field. We first introduce a variational framework for generic pilot-wave systems, including a derivation of particle-wave exchange of Noether currents. We then focus on a particular limit of our system, in which the particle is propelled by the local gradient of its pilot wave. In this case, we see that the Compton-scale oscillations proposed by de Broglie emerge naturally in the form of particle vibrations, and that the vibration modes dynamically adjust to match the Compton frequency in the rest frame of the particle. The underlying field dynamically changes its radiation patterns in order to satisfy the de Broglie relation p=ℏk at the particle’s position, even as the particle momentum p changes. The wave form and frequency thus evolve so as to conform to de Broglie’s harmony of phases, even for unsteady particle motion. We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory, and that the associated energy imparts a constant increase to the particle’s inertial mass. Finally, we see that the particle’s wave-induced Compton-scale oscillation gives rise to a classical version of the Heisenberg uncertainty principle.more » « less
-
Interaction-free measurement is thought to allow for quantum particles to detect objects along paths they never traveled. As such, it represents one of the most beguiling of quantum phenomena. Here, we present a classical analog of interaction-free measurement using the hydrodynamic pilot-wave system, in which a droplet self-propels across a vibrating fluid surface, guided by a wave of its own making. We argue that existing rationalizations of interaction-free quantum measurement in terms of particles being guided by waveforms allow for a classical description manifest in our hydrodynamic system, wherein the measurement is decidedly not interaction-free.more » « less
-
We report the results of a theoretical investigation of the stability of a hydrodynamic analogue of Landau levels, specifically circular orbits arising when a millimetric droplet self-propels along the surface of a vibrating, rotating liquid bath. Our study elucidates the form of the stability diagram characterising the critical memory at which circular orbits destabilise, and the form of instability. Particular attention is given to rationalising observations reported in prior experimental works, including the prevalence of resonant wobbling instabilities, in which the instability frequency is approximately twice the orbital frequency. We also explore the physical mechanism responsible for the onset of instability. Specifically, we compare the efficacy of different heuristic arguments proposed in prior studies, including propositions that the most unstable orbits arise when their radii correspond to the zeros of Bessel functions or when their associated wave intensity is extremised. We establish a new relation between orbital stability and the mean wave field, which supersedes existing heuristic arguments and suggests a rationale for the alternate wobbling and monotonic instabilities arising at onset as the orbital radius is increased progressively.more » « less
-
We develop a data-driven characterization of the pilot-wave hydrodynamic system in which a bouncing droplet self-propels along the surface of a vibrating bath. We consider drop motion in a confined one-dimensional geometry and apply the dynamic mode decomposition (DMD) in order to characterize the evolution of the wave field as the bath’s vibrational acceleration is increased progressively. Dynamic mode decomposition provides a regression framework for adaptively learning a best-fit linear dynamics model over snapshots of spatiotemporal data. Thus, DMD reduces the complex nonlinear interactions between pilot waves and droplet to a low-dimensional linear superposition of DMD modes characterizing the wave field. In particular, it provides a low-dimensional characterization of the bifurcation structure of the pilot-wave physics, wherein the excitation and recruitment of additional modes in the linear superposition models the bifurcation sequence. This DMD characterization yields a fresh perspective on the bouncing-droplet problem that forges valuable new links with the mathematical machinery of quantum mechanics. Specifically, the analysis shows that as the vibrational acceleration is increased, the pilot-wave field undergoes a series of Hopf bifurcations that ultimately lead to a chaotic wave field. The established relation between the mean pilot-wave field and the droplet statistics allows us to characterize the evolution of the emergent statistics with increased vibrational forcing from the evolution of the pilot-wave field. We thus develop a numerical framework with the same basic structure as quantum mechanics, specifically a wave theory that predicts particle statistics.more » « less
-
Abstract Superradiance occurs in quantum optics when the emission rate of photons from multiple atoms is enhanced by inter-atom interactions. When the distance between two atoms is comparable to the emission wavelength, the atoms become entangled and their emission rate varies sinusoidally with their separation distance due to quantum interference. We here explore a theoretical model of pilot-wave hydrodynamics, wherein droplets self-propel on the surface of a vibrating bath. When a droplet is confined to a pair of hydrodynamic cavities between which it may transition unpredictably, in certain instances the system constitutes a two-level system with well-defined ground and excited states. When two such two-level systems are coupled through an intervening cavity, the probability of transition between states may be enhanced or diminished owing to the wave-mediated influence of its neighbour. Moreover, the tunneling probability varies sinusoidally with the coupling-cavity length. We thus establish a classical analog of quantum superradiance.more » « less
An official website of the United States government
