We present the results of a theoretical investigation of a dynamical system consisting of a particle self-propelling through a resonant interaction with its own quasi-monochromatic pilot-wave field. We rationalize two distinct mechanisms, arising in different regions of parameter space, that may lead to a wavelike statistical signature with the pilot-wavelength. First, resonant speed oscillations with the wavelength of the guiding wave may arise when the particle is perturbed from its steady self-propelling state. Second, a random-walk-like motion may set in when the decay rate of the pilot-wave field is sufficiently small. The implications for the emergent statistics in classical pilot-wave systems are discussed.
more »
« less
Revisiting de Broglie’s Double-Solution Pilot-Wave Theory with a Lorentz-Covariant Lagrangian Framework
The relation between de Broglie’s double-solution approach to quantum dynamics and the hydrodynamic pilot-wave system has motivated a number of recent revisitations and extensions of de Broglie’s theory. Building upon these recent developments, we here introduce a rich family of pilot-wave systems, with a view to reformulating and studying de Broglie’s double-solution program in the modern language of classical field theory. Notably, the entire family is local and Lorentz-invariant, follows from a variational principle, and exhibits time-invariant, two-way coupling between particle and pilot-wave field. We first introduce a variational framework for generic pilot-wave systems, including a derivation of particle-wave exchange of Noether currents. We then focus on a particular limit of our system, in which the particle is propelled by the local gradient of its pilot wave. In this case, we see that the Compton-scale oscillations proposed by de Broglie emerge naturally in the form of particle vibrations, and that the vibration modes dynamically adjust to match the Compton frequency in the rest frame of the particle. The underlying field dynamically changes its radiation patterns in order to satisfy the de Broglie relation p=ℏk at the particle’s position, even as the particle momentum p changes. The wave form and frequency thus evolve so as to conform to de Broglie’s harmony of phases, even for unsteady particle motion. We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory, and that the associated energy imparts a constant increase to the particle’s inertial mass. Finally, we see that the particle’s wave-induced Compton-scale oscillation gives rise to a classical version of the Heisenberg uncertainty principle.
more »
« less
- Award ID(s):
- 2154151
- PAR ID:
- 10510731
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Symmetry
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 2073-8994
- Page Range / eLocation ID:
- 149
- Subject(s) / Keyword(s):
- Klein–Gordon equation hydrodynamic quantum analogues pilot-wave theory Zitterbewegung Heisenberg uncertainty principle harmony of phases Lagrangian mechanics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a data-driven characterization of the pilot-wave hydrodynamic system in which a bouncing droplet self-propels along the surface of a vibrating bath. We consider drop motion in a confined one-dimensional geometry and apply the dynamic mode decomposition (DMD) in order to characterize the evolution of the wave field as the bath’s vibrational acceleration is increased progressively. Dynamic mode decomposition provides a regression framework for adaptively learning a best-fit linear dynamics model over snapshots of spatiotemporal data. Thus, DMD reduces the complex nonlinear interactions between pilot waves and droplet to a low-dimensional linear superposition of DMD modes characterizing the wave field. In particular, it provides a low-dimensional characterization of the bifurcation structure of the pilot-wave physics, wherein the excitation and recruitment of additional modes in the linear superposition models the bifurcation sequence. This DMD characterization yields a fresh perspective on the bouncing-droplet problem that forges valuable new links with the mathematical machinery of quantum mechanics. Specifically, the analysis shows that as the vibrational acceleration is increased, the pilot-wave field undergoes a series of Hopf bifurcations that ultimately lead to a chaotic wave field. The established relation between the mean pilot-wave field and the droplet statistics allows us to characterize the evolution of the emergent statistics with increased vibrational forcing from the evolution of the pilot-wave field. We thus develop a numerical framework with the same basic structure as quantum mechanics, specifically a wave theory that predicts particle statistics.more » « less
-
We present a macroscopic analog of an open quantum system, achieved with a classical pilot-wave system. Friedel oscillations are the angstrom-scale statistical signature of an impurity on a metal surface, concentric circular modulations in the probability density function of the surrounding electron sea. We consider a millimetric drop, propelled by its own wave field along the surface of a vibrating liquid bath, interacting with a submerged circular well. An ensemble of drop trajectories displays a statistical signature in the vicinity of the well that is strikingly similar to Friedel oscillations. The droplet trajectories reveal the dynamical roots of the emergent statistics. Our study elucidates a new mechanism for emergent quantum-like statistics in pilot-wave hydrodynamics and so suggests new directions for the nascent field of hydrodynamic quantum analogs.more » « less
-
We investigate the particle–antiparticle symmetry of the gravitationally coupled Dirac equation, both on the basis of the gravitational central-field problem and in general curved space–time backgrounds. First, we investigate the central-field problem with the help of a Foldy–Wouthuysen transformation. This disentangles the particle from the antiparticle solutions, and leads to a “matching relation” of the inertial and the gravitational mass, which is valid for both particles as well as antiparticles. Second, we supplement this derivation by a general investigation of the behavior of the gravitationally coupled Dirac equation under the discrete symmetry of charge conjugation, which is tantamount to a particle[Formula: see text]antiparticle transformation. Limitations of the Einstein equivalence principle due to quantum fluctuations are discussed. In quantum mechanics, the question of where and when in the Universe an experiment is being performed can only be answered up to the limitations implied by Heisenberg’s Uncertainty Principle, questioning an assumption made in the original formulation of the Einstein equivalence principle. Furthermore, at some level of accuracy, it becomes impossible to separate nongravitational from gravitational experiments, leading to further limitations.more » « less
-
The semiclassical backreaction equations are solved in closed Robertson-Walker spacetimes containing a positive cosmological constant and a conformally coupled massive scalar field. Renormalization of the stress-energy tensor results in higher derivative terms that can lead to solutions that vary on much shorter time scales than the solutions that would occur if the higher derivative terms were not present. These extra solutions can be eliminated through the use of order reduction. Four different methods of order reduction are investigated. These are first applied to the case when only conformally invariant fields, with and without classical radiation, are present. Then they are applied to the massive conformally coupled scalar field. The effects of different adiabatic vacuum states for the massive field are considered. It is found that if enough particles are produced, then the Universe collapses to a final singularity. Otherwise it undergoes a bounce, but at a smaller value of the scale factor (for the models considered) than occurs for the classical de Sitter solution. The stress-energy tensor incorporates both particle production and vacuum polarization effects. An analysis of the energy density of the massive field is done to determine when the contribution from the particles dominates.more » « less