We present a number of fresh perspectives on pilot-wave hydrodynamics, the field initiated in 2005 by Couder and Fort's discovery that millimetric droplets self-propelling along the surface of a vibrating bath can capture certain features of quantum systems. A recurring theme will be that pilot-wave hydrodynamics furnishes a classical framework for reproducing many quantum phenomena and allows one to rationalize such phenomena mechanistically, from a local realist perspective, obviating the need to appeal to quantum nonlocality. The distinction is drawn between hydrodynamic pilot-wave theory and its quantum counterparts, Bohmian mechanics, the Bohm–Vigier stochastic pilot-wave theory, and de Broglie's theory of the double-solution. Each of these quantum predecessors provide a valuable touchstone as we take the physical picture engendered in the walking droplets and extend it into the quantum realm via theoretical modeling. Emphasis is given to recent developments in the field, both experimental and conceptual, and to forecasting potentially fruitful new directions.
more »
« less
Revisiting de Broglie’s Double-Solution Pilot-Wave Theory with a Lorentz-Covariant Lagrangian Framework
The relation between de Broglie’s double-solution approach to quantum dynamics and the hydrodynamic pilot-wave system has motivated a number of recent revisitations and extensions of de Broglie’s theory. Building upon these recent developments, we here introduce a rich family of pilot-wave systems, with a view to reformulating and studying de Broglie’s double-solution program in the modern language of classical field theory. Notably, the entire family is local and Lorentz-invariant, follows from a variational principle, and exhibits time-invariant, two-way coupling between particle and pilot-wave field. We first introduce a variational framework for generic pilot-wave systems, including a derivation of particle-wave exchange of Noether currents. We then focus on a particular limit of our system, in which the particle is propelled by the local gradient of its pilot wave. In this case, we see that the Compton-scale oscillations proposed by de Broglie emerge naturally in the form of particle vibrations, and that the vibration modes dynamically adjust to match the Compton frequency in the rest frame of the particle. The underlying field dynamically changes its radiation patterns in order to satisfy the de Broglie relation p=ℏk at the particle’s position, even as the particle momentum p changes. The wave form and frequency thus evolve so as to conform to de Broglie’s harmony of phases, even for unsteady particle motion. We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory, and that the associated energy imparts a constant increase to the particle’s inertial mass. Finally, we see that the particle’s wave-induced Compton-scale oscillation gives rise to a classical version of the Heisenberg uncertainty principle.
more »
« less
- Award ID(s):
- 2154151
- PAR ID:
- 10510731
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Symmetry
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 2073-8994
- Page Range / eLocation ID:
- 149
- Subject(s) / Keyword(s):
- Klein–Gordon equation hydrodynamic quantum analogues pilot-wave theory Zitterbewegung Heisenberg uncertainty principle harmony of phases Lagrangian mechanics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present the results of a theoretical investigation of a dynamical system consisting of a particle self-propelling through a resonant interaction with its own quasi-monochromatic pilot-wave field. We rationalize two distinct mechanisms, arising in different regions of parameter space, that may lead to a wavelike statistical signature with the pilot-wavelength. First, resonant speed oscillations with the wavelength of the guiding wave may arise when the particle is perturbed from its steady self-propelling state. Second, a random-walk-like motion may set in when the decay rate of the pilot-wave field is sufficiently small. The implications for the emergent statistics in classical pilot-wave systems are discussed.more » « less
-
We develop a data-driven characterization of the pilot-wave hydrodynamic system in which a bouncing droplet self-propels along the surface of a vibrating bath. We consider drop motion in a confined one-dimensional geometry and apply the dynamic mode decomposition (DMD) in order to characterize the evolution of the wave field as the bath’s vibrational acceleration is increased progressively. Dynamic mode decomposition provides a regression framework for adaptively learning a best-fit linear dynamics model over snapshots of spatiotemporal data. Thus, DMD reduces the complex nonlinear interactions between pilot waves and droplet to a low-dimensional linear superposition of DMD modes characterizing the wave field. In particular, it provides a low-dimensional characterization of the bifurcation structure of the pilot-wave physics, wherein the excitation and recruitment of additional modes in the linear superposition models the bifurcation sequence. This DMD characterization yields a fresh perspective on the bouncing-droplet problem that forges valuable new links with the mathematical machinery of quantum mechanics. Specifically, the analysis shows that as the vibrational acceleration is increased, the pilot-wave field undergoes a series of Hopf bifurcations that ultimately lead to a chaotic wave field. The established relation between the mean pilot-wave field and the droplet statistics allows us to characterize the evolution of the emergent statistics with increased vibrational forcing from the evolution of the pilot-wave field. We thus develop a numerical framework with the same basic structure as quantum mechanics, specifically a wave theory that predicts particle statistics.more » « less
-
We present a macroscopic analog of an open quantum system, achieved with a classical pilot-wave system. Friedel oscillations are the angstrom-scale statistical signature of an impurity on a metal surface, concentric circular modulations in the probability density function of the surrounding electron sea. We consider a millimetric drop, propelled by its own wave field along the surface of a vibrating liquid bath, interacting with a submerged circular well. An ensemble of drop trajectories displays a statistical signature in the vicinity of the well that is strikingly similar to Friedel oscillations. The droplet trajectories reveal the dynamical roots of the emergent statistics. Our study elucidates a new mechanism for emergent quantum-like statistics in pilot-wave hydrodynamics and so suggests new directions for the nascent field of hydrodynamic quantum analogs.more » « less
-
We present a systematic framework to quantify the interplay between coherence and wave-particle duality in generic two-path interference systems. Our analysis reveals a closed-form duality ellipse (DE) equality, that rigorously unifies visibility (a traditional waveness measure) and predictability (a particleness measure) with degree of coherence, providing a complete mathematical embodiment of Bohr's complementarity principle. Extending this framework to quantum imaging with undetected photons (QIUP), where both path information and photon interference are inherently linked to spatial object reconstruction, we establish an imaging duality ellipse (IDE) that directly connects wave-particle duality to the object's transmittance profile. This relation enables object characterization through duality measurements alone and remains robust against experimental imperfections such as decoherence and misalignment. Our results advance the fundamental understanding of quantum duality while offering a practical toolkit for optimizing coherence-driven quantum technologies, from imaging to sensing.more » « less
An official website of the United States government

