skip to main content


Search for: All records

Award ID contains: 2154323

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce an energy-resolved variant of quantum thermodynamics for open systems strongly coupled to their baths. The approach generalizes the Landauer-Buttiker inside-outside duality method [Phys. Rev. Lett. 120, 107701 (2018)] to interacting systems subjected to arbitrary external driving. It is consistent with the underlying dynamical quantum transport description and is capable of overcoming limitations of the only other consistent approach [New J. Phys. 12, 013013 (2010)]. We illustrate viability of the generalized inside-outside method with numerical simulations for generic junction models. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. We study the applicability of the Liouvillian exceptional points (LEPs) approach to nanoscale open quantum systems. A generic model of the driven two-level system in a thermal environment is analyzed within the nonequilibrium Green’s function (NEGF) and Bloch quantum master equation formulations. We derive the latter starting from the exact NEGF Dyson equations and highlight the qualitative limitations of the LEP treatment by examining the approximations employed in its derivation. We find that the non-Markov character of evolution in open quantum systems does not allow for the introduction of the concept of exceptional points for a description of their dynamics. Theoretical analysis is illustrated with numerical simulations.

     
    more » « less
    Free, publicly-accessible full text available January 28, 2025
  3. The infrared response of a system of two vibrational modes in a cavity is calculated by an effective non-Hermitian Hamiltonian derived by employing the nonequilibrium Green's function (NEGF) formalism. Degeneracies of the Hamiltonian (exceptional points, EPs) widely employed in theoretical analysis of optical cavity spectroscopies are used in an approximate treatment and compared with the full NEGF. Qualitative limitations of the EP treatment are explained by examining the approximations employed in the calculation. 
    more » « less