skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Liouvillian exceptional points of an open driven two-level system
We study the applicability of the Liouvillian exceptional points (LEPs) approach to nanoscale open quantum systems. A generic model of the driven two-level system in a thermal environment is analyzed within the nonequilibrium Green’s function (NEGF) and Bloch quantum master equation formulations. We derive the latter starting from the exact NEGF Dyson equations and highlight the qualitative limitations of the LEP treatment by examining the approximations employed in its derivation. We find that the non-Markov character of evolution in open quantum systems does not allow for the introduction of the concept of exceptional points for a description of their dynamics. Theoretical analysis is illustrated with numerical simulations.  more » « less
Award ID(s):
2154323
PAR ID:
10504850
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
4
ISSN:
0021-9606
Page Range / eLocation ID:
044116
Subject(s) / Keyword(s):
Liouville space exceptional points non equilibrium Green's functions Bloch quantum master equation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The infrared response of a system of two vibrational modes in a cavity is calculated by an effective non-Hermitian Hamiltonian derived by employing the nonequilibrium Green's function (NEGF) formalism. Degeneracies of the Hamiltonian (exceptional points, EPs) widely employed in theoretical analysis of optical cavity spectroscopies are used in an approximate treatment and compared with the full NEGF. Qualitative limitations of the EP treatment are explained by examining the approximations employed in the calculation. 
    more » « less
  2. Non-Hermitian systems have attracted significant interest because of their intriguing properties, including exceptional points (EPs), where eigenvalues and the corresponding eigenstates coalesce. In particular, quantum systems with EPs exhibit an enhanced sensitivity to external perturbations, which increases with the order of the EP. Therefore, higher-order EPs hold significant potential for advanced sensing applications, but they are challenging to achieve due to stringent symmetry requirements. In this work, we study the dynamics of a generalized lossy waveguide beam splitter with asymmetric coupling by introducing non-reciprocity as a tunable parameter to achieve higher-order EPs even without dissipation. Moreover, we analyze the evolution of NOON-states under activated non-reciprocity, highlighting its impact on quantum systems. Our results open new pathways for realizing higher-order EPs in non-reciprocal open quantum systems. 
    more » « less
  3. Parity-time (PT) symmetry was first studied in quantum mechanical systems with a non-Hermitian Hamiltonian whose observables are real-valued. Most existing designs of PT symmetric systems in electronics, optics, and acoustics rely on an exact balance of loss and gain in the media to achieve PT symmetry. However, the dispersive behavior of most loss and gain materials restricts the frequency range where the system is PT symmetric. This makes it challenging to access the exceptional points of the system to observe the PT symmetric transition dynamics. Here, we propose a new path to realize PT symmetric systems based on gyroscopic effects instead of using loss and gain units. We demonstrate that PT symmetry and the occurrence of exceptional points are preserved for inversive, counter-rotating gyroscopic systems even with dispersive sub-units. In a gyroscopic system with two circular rings rotating in opposite directions at the same speed, the spontaneous symmetry breaking across the exceptional points results in a phase transition from a moving maximum deformation location to a motionless maximum point. The motionless maximum point occurs despite the externally imposed rotation of the two rings. The results set the foundation to study nonlinear dispersive physics in PT symmetric systems, including solitary waves and inelastic wave scattering. 
    more » « less
  4. Non-Hermitian exceptional points (EPs) represent a special type of degeneracy where not only the eigenvalues coalesce, but also the eigenstates tend to collapse on each other. Recent studies have shown that in the presence of an EP, light-matter interactions are profoundly modified, leading to a host of novel optical phenomena ranging from enhanced sensitivity to chiral light transport. As of now, however, in order to stabilize a system at the vicinity of an exceptional point, its related parameters must be carefully tuned and/or continuously controlled. To overcome this limitation, here we introduce a new family of broadband exceptional points based on unidirectional coupling, implemented by incorporating an Sshaped waveguide in a microring cavity. In active settings, the resulting unidirectionality exhibits unprecedented resilience to perturbations, thus providing a robust and tunable approach for directly generating beams with distinct orbital angular momentum (OAM). This work could open up new possibilities for manipulating OAM degrees of freedom in applications pertaining to telecommunications and quantum computing, while at the same time may expand the notions of non-Hermiticity in the orbital angular momentum space. 
    more » « less
  5. Recently, exceptional points, a degeneracy of open wave systems, have been observed in photonics, acoustics, and electronics. They have mainly been realized as a degeneracy of resonances; however, a degeneracy associated with the absorption of waves can exhibit distinct and interesting physical features. Here, we demonstrate such an absorbing exceptional point by engineering degeneracies in the absorption spectrum of dissipative optical microcavities. We experimentally distinguished the conditions to realize an absorbing exceptional point versus a resonant exceptional point. Furthermore, when the optical loss was tuned to achieve perfect absorption at an absorbing exceptional point, we observed its signature, an anomalously broadened line shape in the absorption spectrum. The distinct scattering properties of the absorbing exceptional point create opportunities for both fundamental study and applications of non-Hermitian degeneracies. 
    more » « less