Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 15, 2025
-
Free, publicly-accessible full text available July 14, 2025
-
Free, publicly-accessible full text available May 7, 2025
-
Free, publicly-accessible full text available May 1, 2025
-
We propose an enhanced semidefinite program (SDP) relaxation to enable the tight and efficient verification of neural networks (NNs). The tightness improvement is achieved by introducing a nonlinear constraint to existing SDP relaxations previously proposed for NN verification. The efficiency of the proposal stems from the iterative nature of the proposed algorithm in that it solves the resulting non-convex SDP by recursively solving auxiliary convex layer-based SDP problems. We show formally that the solution generated by our algorithm is tighter than state-of-the-art SDP-based solutions for the problem. We also show that the solution sequence converges to the optimal solution of the non-convex enhanced SDP relaxation. The experimental results on standard benchmarks in the area show that our algorithm achieves the state-of-the-art performance whilst maintaining an acceptable computational cost.more » « less