skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2155042

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arynes are fleeting, high‐energy intermediates that undergo myriad trapping reactions by nucleophiles. Their unusual reactivity compared to other electrophiles can spur unexpected mechanistic pathways enroute to the formation of benzenoid products. Herein we explore a particularly unique case of thermally generated arynes reacting with phosphoranes to form helical dibenzothiophenes and ‐selenophenes. Multiple new helical polycyclic aromatic products are reported. DP4+ and X‐ray crystallographic analysis were used in tandem to confirm the structural topologies of selected products and to demonstrate the utility of DP4+ for distinguishing between isomeric polycyclic aromatic compounds. Lastly, we discuss a plausible mechanism consistent with DFT computations that accounts for the product formation; namely, ligand coupling (i.e., reductive elimination) within a hypervalent, pentacarbon‐ligated σ‐phosphorane furnishes the dibenzothio‐ or dibenzoselenophene. 
    more » « less
  2. ABSTRACT: We have established an ambient temperature, one-pot, acid-catalyzed, three-component process involving in situ formation of a tetrayne or triyne that spontaneously cyclizes to a benzyne intermediate. This is rapidly captured to give a diverse range of polycyclic phthalan derivatives. Product structural diversity was enhanced by employing various combinations of alkyne substrates and benzyne trapping reagents. This cascade reaction is versatile and efficient and can be effected by a variety of Lewis and Brønsted acid catalysts. Success in an aqueous or even solvent-free environment was demonstrated. 
    more » « less
    Free, publicly-accessible full text available July 6, 2026
  3. ABSTRACT: Carbenes and carbenoids are commonly employed for the synthesis of cyclopropane-containing compounds. Here we report the metal-free, intramolecular cyclopropanation of tethered alkenes by free carbenes derived from alkynes to construct structurally unique, multicyclic cyclopropanes with perfect atom economy. The nature of the tether influences both the rate of carbene formation as well as subsequent competing reaction events. Some of the substrates lead to metastable cyclopropane intermediates that further fragment to furnish interesting isomeric products by mechanistically novel processes. A removable siloxane tether can be utilized to achieve formal intermolecular cyclopropanations and to access cyclopropanol derivatives. 
    more » « less
  4. ABSTRACT: The relative reactivity of a systematic series of simple aliphatic acetate esters has been measured. Exposure of pairs of esters of increasing remote steric hindrance (by altering the degree of branching of the ester alkyl group) to a methanolic solution of Cs2CO3 proved to be a reliable (and general) method for quantitating the rate differences in these base-catalyzed transesterification reactions. The trends in relative rates are in accordance with the qualitative "Rule of Six" put forward by Melvin S. Newman in 1950, as deduced then from interpretation of earlier reports of ease of Fischer esterification reactions. 
    more » « less
  5. Carbenes (R1R2C:) [like radicals, arynes, and nitrenes] constitute a significant family of neutral, high-energy, reactive intermediates – fleeting chemical entities that undergo rapid reactions. An alkyne (R3C≡CR4) is a fundamental functional group that houses a high degree of potential energy; however, the substantial kinetic stability of alkynes renders them conveniently handleable as shelf-stable chemical commodities. The ability to generate metal-free carbenes directly from alkynes, fueled by the high potential (that is, thermodynamic) energy of the latter, would constitute a significant advance. We report here that this can be achieved simply by warming a mixture of a 2-alkynyl-iminoheterocycle (a cyclic compound containing a nucleophilic nitrogen atom) with an electrophilic alkyne. We demonstrate considerable generality for the process: many shelf-stable alkyne electrophiles engage many classes of (2-alkynyl)heterocyclic nucleophiles to produce carbene intermediates that immediately undergo many types of transformations to provide facile and practical access to a diverse array of heterocyclic products. Key mechanistic aspects of the reactions are delineated. 
    more » « less
  6. We report here a study that has revealed two distinct modes of reactivity of azobenzene derivatives (ArNNAr) with benzynes, depending on whether the aryne reacts with a trans - or a cis -azobenzene geometric isomer. Under thermal conditions, trans -azobenzenes engage benzyne via an initial [2 + 2] trapping event, a process analogous to known reactions of benzynes with diarylimines (ArCNAr). This is followed by an electrocyclic ring opening/closing sequence to furnish dihydrophenazine derivatives, subjects of contemporary interest in other fields ( e.g. , electronic and photonic materials). In contrast, when the benzyne is attacked by a cis -azobenzene, formation of aminocarbazole derivatives occurs via an alternative, net (3 + 2) pathway. We have explored these complementary orthogonal processes both experimentally and computationally. 
    more » « less