Azobenzene-based chiral dopants in cholesteric liquid crystals are of interest since the properties they induce in the liquid crystal could be tuned photochemically. Here, we use a substituted binaphthyl with a halogenated azobenzene as a chiral dopant to induce a photoswitchable cholesteric phase in the nematic 4-n-pentyl-4’-cyanobiphenyl. The azobenzene group chemically attached to the chiral dopant undergoes isomerization from trans to cis upon irradiation with green light (wavelength 535 nm), and from cis to trans upon irradiation with blue light (wavelength 450 nm). The transition between the two isomers causes helicity inversion of the cholesteric, with a left-handed trans isomer and a right-handed cis isomer. We report on the kinetics of photoisomerization of both processes (trans-to-cis and cis-to-trans) in the nematic host by following the pitch evolution over time. We show that the kinetic mechanism corresponds to a two-step process: a first-order isomerization followed by a second-order autocatalytic isomerization. This mechanism differs from the typical first-order kinetics for cis-to-trans or trans-to-cis isomerization in azobenzenes. The autocatalytic process is attributed to interactions between the chiral dopant and the nematic host.
more »
« less
The contrasting reactivity of trans - vs. cis -azobenzenes (ArNNAr) with benzynes
We report here a study that has revealed two distinct modes of reactivity of azobenzene derivatives (ArNNAr) with benzynes, depending on whether the aryne reacts with a trans - or a cis -azobenzene geometric isomer. Under thermal conditions, trans -azobenzenes engage benzyne via an initial [2 + 2] trapping event, a process analogous to known reactions of benzynes with diarylimines (ArCNAr). This is followed by an electrocyclic ring opening/closing sequence to furnish dihydrophenazine derivatives, subjects of contemporary interest in other fields ( e.g. , electronic and photonic materials). In contrast, when the benzyne is attacked by a cis -azobenzene, formation of aminocarbazole derivatives occurs via an alternative, net (3 + 2) pathway. We have explored these complementary orthogonal processes both experimentally and computationally.
more »
« less
- Award ID(s):
- 2155042
- PAR ID:
- 10463322
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 14
- Issue:
- 24
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 6730 to 6737
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photoinduced reconfiguration to control the protein-binding affinity of azobenzene-cyclized peptidesThe impact of next-generation biorecognition elements (ligands) will be determined by the ability to remotely control their binding activity for a target biomolecule in complex environments. Compared to conventional mechanisms for regulating binding affinity (pH, ionic strength, or chaotropic agents), light provides higher accuracy and rapidity, and is particularly suited for labile targets. In this study, we demonstrate a general method to develop azobenzene-cyclized peptide ligands with light-controlled affinity for target proteins. Light triggers a cis/trans isomerization of the azobenzene, which results in a major structural rearrangement of the cyclic peptide from a non-binding to a binding configuration. Critical to this goal are the abiliy to achieve efficient photo-isomerization under low light dosage and the temporal stability of both cis and trans isomers. We demonstrated our method by designing photo-switchable peptides targeting vascular cell adhesion marker 1 (VCAM1), a cell marker implicated in stem cell function. Starting from a known VCAM1-binding linear peptide, an ensemble of azobenzene-cyclized variants with selective light-controlled binding were identified by combining in silico design with experimental characterization via spectroscopy and surface plasmon resonance. Variant cycloAZOB[G-VHAKQHRN-K] featured rapid, light-controlled binding of VCAM1 (KD,Trans/KD,Cis ~ 130). Biotin-cycloAZOB[G-VHAKQHRN-K] was utilized to label brain microvascular endothelial cells (BMECs), showing co-localization with anti-VCAM1 antibodies in cis configuration and negligible binding in trans configuration.more » « less
-
null (Ed.)Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans -azobenzene ( t -Az) and several alkyl-substituted t -Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t -Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t -Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels.more » « less
-
Abstract Photoinduced charge transfer and separation events in a newly synthesized azobenzene‐bridged perylenediimide‐dimer (PDI‐dimer) are demonstrated. Trans‐to‐cis conversion (∼50 % efficiency) from the initial trans PDI‐dimer by 355 nm pulsed laser light, and its reversal, cis‐to‐trans, process by 435 nm laser light irradiation has been possible to accomplish. Efficient fluorescence quenching in the PDI‐dimer, more so for the cis isomer was witnessed, and such quenching increased with increasing solvent polarity. DFT‐calculated geometry and electronic structures helped in visualizing the charge transfer in the PDI‐dimer in both isomeric forms, and also revealed certain degree of participation of the azobenzene entity in the charge transfer events. Femtosecond transient absorption spectral studies confirmed occurrence of both charge transfer followed by charge separation in the studied PDI‐dimer in both trans and cis forms in polar solvents, and the evaluated time constants from Global target analysis revealed accelerated events in the cis PDI‐dimer due to proximity effects. The present study offers key insights on the role of the azobenzene bridge, and the dimer geometry in governing the excited state charge transfer and separation in symmetrically linked PDI dimer.more » « less
-
The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures.more » « less