skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2200448

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sea-level changes in polar environments are important for understanding the timing and magnitude of past ice-sheet changes. Most of the few records of such past sea-level changes in Antarctica are those derived from raised beach ridges. Many studies using raised beach ridges to reconstruct past sea levels across Antarctica commonly assume that they only record falling sea levels. However, their internal architecture may contain a record of other oscillations in relative sea-level (RSL) change. In this study, we examine the internal architecture of a well-developed set of raised beach ridges on Livingston Island of the Antarctic Peninsula using 10+ km of ground penetrating radar (GPR). Recalibrated published radiocarbon ages are used in combination with new optically stimulated luminescence (OSL) ages to compare beach morphology and stratigraphy to the glacial history of the region. Within this flight of raised beach ridges, evidence was found for both regressive and transgressive depositional patterns marked by progradational seaward dipping facies deposited during periods of RSL fall followed by erosion and deposition of landward dipping overwash and aggrading beds during interpreted periods of RSL rise. This succession is routinely located over a notch in the bedrock interpreted to represent a wave-cut feature. The ages of raised beach ridges underlain by wave-cut notches and composed of landward-dipping strata correlate with known Holocene ice advances at <500, ~2000, and ~5000 cal yrs BP. We propose that these transgressive phases are the result of glacial-isostatic adjustment (GIA). This GIA hypothesis further supports recent assertions of a much more dynamic RSL history for Antarctic coastlines, which may contaminate the Last Glacial Maximum RSL signal across Antarctica. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Radiocarbon dating is arguably the most common method for dating Quaternary deposits. However, accurate age assignments using radiocarbon dating are dependent on knowing the radiocarbon reservoir. For the coastal waters across Antarctica, the radiocarbon reservoirs show significant variation, ranging from 700 to 6000 years depending on the material dated and the period in question. In this study, we examine the radiocarbon reservoir age for the shallow waters of the Southern Ocean using 23 whale bones salvaged from commercial whaling operations on or near the Western Antarctic Peninsula between 1904 and 1916. The species origin of the bones had been identified previously as humpback, fin, or blue whales using sequences of mitochondrial (mt)DNA. We find an average reservoir age of 1050 ± 135 years for these 23 whale bones, with a <100-year difference in the reservoir age by species. A comparison between our results and other studies through the Holocene suggest that the Southern Ocean surface water radiocarbon reservoir age is of a similar magnitude across much of Antarctica and has not significantly changed for the last 14,000 years. Combining our new ages with existing data sets provides insight to the stability of the Southern Ocean marine radiocarbon reservoir age, enhancing our understanding of ocean ventilation and upwelling dynamics throughout the Holocene. 
    more » « less