skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the radiocarbon reservoir age for the Southern Ocean using whale bones salvaged from early 20th century whaling stations
Radiocarbon dating is arguably the most common method for dating Quaternary deposits. However, accurate age assignments using radiocarbon dating are dependent on knowing the radiocarbon reservoir. For the coastal waters across Antarctica, the radiocarbon reservoirs show significant variation, ranging from 700 to 6000 years depending on the material dated and the period in question. In this study, we examine the radiocarbon reservoir age for the shallow waters of the Southern Ocean using 23 whale bones salvaged from commercial whaling operations on or near the Western Antarctic Peninsula between 1904 and 1916. The species origin of the bones had been identified previously as humpback, fin, or blue whales using sequences of mitochondrial (mt)DNA. We find an average reservoir age of 1050 ± 135 years for these 23 whale bones, with a <100-year difference in the reservoir age by species. A comparison between our results and other studies through the Holocene suggest that the Southern Ocean surface water radiocarbon reservoir age is of a similar magnitude across much of Antarctica and has not significantly changed for the last 14,000 years. Combining our new ages with existing data sets provides insight to the stability of the Southern Ocean marine radiocarbon reservoir age, enhancing our understanding of ocean ventilation and upwelling dynamics throughout the Holocene.  more » « less
Award ID(s):
2200448
PAR ID:
10537543
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Quaternary Science Reviews
Volume:
336
Issue:
C
ISSN:
0277-3791
Page Range / eLocation ID:
108756
Subject(s) / Keyword(s):
Marine radiocarbon reservoir effect Southern Ocean West Antarctic Peninsula ΔR Holocene
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Palmer Deep sediment cores are used to produce the first high-resolution, continuous late Pleistocene to Holocene time-series from the Antarctic marine system. The sedimentary record is dated using accelerator mass spectrometer radiocarbon methods on acid insoluble organic matter and foraminiferal calcite. Fifty-four radiocarbon analyses are utilized in the dating which provides a calibrated timescale back to 13 ka BP. Reliability of resultant ages on organic matter is assured because duplicates produce a standard deviation from the surface age of less than laboratory error (i.e., ±50 years). In addition, surface organic matter ages at the site are in excellent agreement with living calcite ages at the accepted reservoir age of 1260 years for the Antarctic Peninsula. Spectral analyses of the magnetic susceptibility record against the age model reveal unusually strong periodicity in the 400,–200 and 50-70 year frequency bands, similar to other high-resolution records from the Holocene but, so far, unique for the circum-Antarctic. Here we show that comparison to icecore records of specific climatic events (e.g., the ’Little Ice Age‘, Neoglacial, Hypsithermal, and the Bølling/Allerød to Younger Dryas transition) provides improved focus upon the relative timing of atmosphere/ocean changes between the northern anid southern high latitudes. 
    more » « less
  2. Abstract Constraining radiocarbon ( 14 C) reservoir age offsets is critical to deriving accurate calendar-age chronologies from 14 C dating of materials which did not draw carbon directly from the atmosphere. The application of 14 C dating to such materials is severely limited in hydrologically sensitive environments like the Black Sea because of the difficulty to quantify reservoir age offsets, which can vary quickly and significantly through time, due to the dynamics of the biogeochemical cycling of carbon. Here we reconstruct 14 C reservoir age offsets (R shell-atm ) of Holocene bivalve shells from the coastal Black Sea relatively to their contemporaneous atmosphere. We show that the 14 C reservoir age offset and the stable carbon isotope composition of bivalve shells are linearly correlated in this region. From a biogeochemical standpoint, this suggests that inorganic stable carbon isotope and 14 C compositions of Black Sea coastal waters are controlled by the balance between autochthonous primary productivity and heterotrophic respiration of allochthonous pre-aged terrestrial organic matter supplied by rivers. This provided an important implication for Black Sea geochronology as the reservoir age offset of 14 C-dated bivalve shell can be inferred from its stable carbon isotope composition. Our results provide a fundamental and inexpensive geochemical tool which will considerably improve the accuracy of Holocene calendar age chronologies in the Black Sea. 
    more » « less
  3. Abstract Humpback whales (Megaptera novaeangliae) are a cosmopolitan species and perform long annual migrations between low-latitude breeding areas and high-latitude feeding areas. Their breeding populations appear to be spatially and genetically segregated due to long-term, maternally inherited fidelity to natal breeding areas. In the Southern Hemisphere, some humpback whale breeding populations mix in Southern Ocean waters in summer, but very little movement between Pacific and Atlantic waters has been identified to date, suggesting these waters constituted an oceanic boundary between genetically distinct populations. Here, we present new evidence of summer co-occurrence in the West Antarctic Peninsula feeding area of two recovering humpback whale breeding populations from the Atlantic (Brazil) and Pacific (Central and South America). As humpback whale populations recover, observations like this point to the need to revise our perceptions of boundaries between stocks, particularly on high latitude feeding grounds. We suggest that this “Southern Ocean Exchange” may become more frequent as populations recover from commercial whaling and climate change modifies environmental dynamics and humpback whale prey availability. 
    more » « less
  4. ABSTRACT Bioerosion is a valuable tool for inferring palaeoenvironmental and palaeoclimatic changes over time and across different regions. However, studies of bioerosion traces are scarce in the Southern Hemisphere. Most ichnological studies within Argentina are concentrated in San Jorge Gulf (Patagonia, Argentina) and little is known about deposits located north of the Gulf. Here, we focus on bioerosion traces on Quaternary mollusc shells. Samples were collected from Quaternary marine deposits at the Bahía Vera–Cabo Raso sites in northern San Jorge Gulf. To resolve age discrepancies reported in the literature, we use amino acid racemization and radiocarbon dating to confirm the presence of beach ridge deposits from Marine Isotope Stage (MIS) 5 and MIS 1. Fourteen ichnotaxa are recorded in the study area. Additionally, distinct variations in the pattern of bioerosion across different ages are observed, indicating that environmental changes occurred in the northern San Jorge Gulf between the MIS 5 interglacial and the Holocene. This reinforces the hypothesis that there is an association between bioerosion, productivity and circulation in the Southern Atlantic Ocean. 
    more » « less
  5. ABSTRACT Taphonomic indicators are often used to assess time-since-death of skeletal remains. These indicators frequently have limited accuracy, resulting in the reliance of other methodologies to age remains. Arctica islandica, commonly known as the ocean quahog, is a relatively widespread bivalve in the North Atlantic, with an extended lifespan that often exceeds two hundred years; hence, their shells are often studied to evaluate climate change over time. This report evaluates taphonomic age using 117 A. islandica shells collected from the Mid-Atlantic Bight offshore of the Delmarva Peninsula with radiocarbon dates extending from 60–4,400 cal years BP. These shells had varying degrees of taphonomic alteration produced by discoloration and degradation of periostracum. To determine if a relationship exists between taphonomic condition and time-since-death, radiocarbon ages were compared with the amount of remaining periostracum and type of discoloration. Old shells (individuals that died long ago) were discolored orange with no periostracum while younger shells (individuals that died more recently) had their original color, with some periostracum. Both the disappearance of periostracum and appearance of discoloration followed a logistic process, with 50% of shells devoid of periostracum and 50% discolored in about 1,000 years. The logistic form of long-term taphonomic processes degrading shell condition is first reported here, as are the longest time series for taphonomic processes in death assemblages within the Holocene record. This relationship can be utilized for triage when deciding what shells to age from time-averaged assemblages, permitting more efficient application of expensive methods of aging such as radiocarbon dating. 
    more » « less