skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2201710

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. We introduce AutoVER, an Autoregressive model for Visual Entity Recognition. Our model extends an autoregressive Multimodal Large Language Model by employing retrieval augmented constrained generation. It mitigates low performance on out-of-domain entities while excelling in queries that require visual reasoning. Our method learns to distinguish similar entities within a vast label space by contrastively training on hard negative pairs in parallel with a sequence-to-sequence objective without an external retriever. During inference, a list of retrieved candidate answers explicitly guides language generation by removing invalid decoding paths. The proposed method achieves significant improvements across different dataset splits in the recently proposed Oven-Wikibenchmark with accuracy on the Entity seen split rising from 32.7% to 61.5%. It demonstrates superior performance on the unseen and query splits by a substantial double-digit margin, while also preserving the ability to effectively transfer to other generic visual question answering benchmarks without further training. 
    more » « less
  4. We propose ViC-MAE, a model that combines both Masked AutoEncoders (MAE) and contrastive learning. ViC-MAE is trained using a global representation obtained by pooling the local features learned under an MAE reconstruction loss and using this representation under a contrastive objective across images and video frames. We show that visual representations learned under ViC-MAE generalize well to video and image classification tasks. Particularly, ViC-MAE obtains state-of-the-art transfer learning performance from video to images on Imagenet-1k compared to the recently proposed OmniMAE by achieving a top-1 accuracy of 86% (+1.3% absolute improvement) when trained on the same data and 87.1% (+2.4% absolute improvement) when training on extra data. At the same time, ViC-MAE outperforms most other methods on video benchmarks by obtaining 75.9% top-1 accuracy on the challenging Something something-v2 video benchmark. When training on videos and images from diverse datasets, our method maintains a balanced transfer-learning performance between video and image classification benchmarks, coming only as a close second to the best-supervised method. 
    more » « less