Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Grouping stars by chemical similarity has the potential to reveal the Milky Way’s evolutionary history. The APOGEE stellar spectroscopic survey has the resolution and sensitivity for this task. However, APOGEE lacks access to strong lines of neutron-capture elements (Z> 28), which have nucleosynthetic origins that are distinct from those of the lighter elements. We assess whether APOGEE abundances are sufficient for selecting chemically similar disk stars by identifying 25 pairs of chemical “doppelgängers” in APOGEE DR17 and following them up with the Tull spectrograph, an optical,R∼ 60,000 echelle on the McDonald Observatory 2.7 m telescope. Line-by-line differential analyses of pairs’ optical spectra reveal neutron-capture (Y, Zr, Ba, La, Ce, Nd, and Eu) elemental abundance differences of Δ[X/Fe] ∼ 0.020 ± 0.015 to 0.380 ± 0.15 dex (4%–140%), and up to 0.05 dex (12%) on average, a factor of 1–2 times higher than intracluster pairs. This is despite the pairs sharing nearly identical APOGEE-reported abundances and [C/N] ratios, a tracer of giant-star age. This work illustrates that even when APOGEE abundances derived from spectra with a signal-to-noise ratio > 300 are available, optically measured neutron-capture element abundances contain critical information about composition similarity. These results hold implications for the chemical dimensionality of the disk, mixing within the interstellar medium, and chemical tagging with the neutron-capture elements.more » « lessFree, publicly-accessible full text available October 23, 2026
-
Abstract Using multielement abundances from the Sloan Digital Sky Survey APOGEE survey, we investigate the origin of abundance variations in Milky Way (MW) disk stars on the “high-αplateau,” with −0.5 ≤ [Mg/H] ≤ −0.1 and 0.25 ≤ [Mg/Fe] ≤ 0.35. The elevated [α/Fe] ratios of these stars imply low enrichment contributions from Type Ia supernovae (SN Ia), but it is unclear whether their abundance patterns reflect pure core-collapse supernova (CCSN) enrichment. We find that plateau stars with higher [Fe/Mg] ratios also have higher [X/Mg] ratios for other iron-peak elements, suggesting that the [Fe/Mg] variations in the plateau population do reflect variations in the SN Ia/CCSN ratio. To quantify this finding, we fit the observed abundance patterns with a two-process model, calibrated on the full MW disk, which represents each star’s abundances as the sum of a prompt CCSN process with amplitudeAccand a delayed SN Ia process with amplitudeAIa. This model is generally successful at explaining the observed trends of [X/Mg] withAIa/Acc, which are steeper for elements with a large SN Ia contribution (e.g., Cr, Ni, Mn) and flatter for elements with low SN Ia contribution (e.g., O, Si, Ca). Our analysis does not determine the value of [Mg/Fe] corresponding to pure CCSN enrichment, but it should be at least as high as the upper edge of the plateau at [Mg/Fe] ≈ 0.35, and could be significantly higher. Compared to the two-process predictions, the observed trends of [X/Mg] withAIa/Accare steeper for (C+N) but shallower for Ce, providing intriguing but contradictory clues about asymptotic giant branch enrichment in the early disk.more » « lessFree, publicly-accessible full text available November 13, 2026
-
Abstract Understanding the ages of stars is crucial for unraveling the formation history and evolution of our Galaxy. Traditional methods for estimating stellar ages from spectroscopic data often struggle with providing appropriate uncertainty estimations and are severely constrained by the parameter space. In this work, we introduce a new approach using normalizing flows—a type of deep generative model—to estimate stellar ages for evolved stars with improved accuracy and robust uncertainty characterization. The model is trained on stellar masses for evolved stars derived from asteroseismology and predicts the relationship between the carbon and nitrogen abundances of a given star and its age. Unlike standard neural network techniques, normalizing flows enable the recovery of full likelihood distributions for individual stellar ages, offering a richer and more informative perspective on uncertainties. Our method yields age estimations for 378,720 evolved stars and achieves a typical absolute age uncertainty of approximately 2 Gyr. By intrinsically accounting for the coverage and density of the training data, our model ensures that the resulting uncertainties reflect both the inherent noise in the data and the completeness of the sampled parameter space. Applying this method to data from the fifth-generation Sloan Digital Sky Survey Milky Way Mapper, we have produced the largest stellar age catalog for evolved stars to date.more » « lessFree, publicly-accessible full text available July 3, 2026
-
The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars Are Metal RichAbstract Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of ∼9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor anequilibrium scenario, in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium (ISM) with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the ISM for long, which causes the ratio of star formation to accretion, , to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on ∼Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining with increasing Galactocentric radius.more » « lessFree, publicly-accessible full text available July 10, 2026
-
Abstract Many nucleosynthetic channels create the elements, but two-parameter models characterized byαand Fe nonetheless predict stellar abundances in the Galactic disk to accuracies of 0.02–0.05 dex for most measured elements, near the level of current abundance uncertainties. It is difficult to make individual measurements more precise than this to investigate lower-amplitude nucleosynthetic effects, but population studies of mean abundance patterns can reveal more subtle abundance differences. Here, we look at the detailed abundances for 67,315 stars from the Apache Point Observatory Galactic Evolution Experiment (or APOGEE) Data Release 17, but in abundance residuals away from a best-fit two-parameter, data-driven nucleosynthetic model. We find that these residuals show complex structures with respect to age, guiding radius, and vertical action that are not random and are also not strongly correlated with sources of systematic error such as ,Teff, and radial velocity. The residual patterns, especially in Na, C+N, Mn, and Ce, trace kinematic structures in the Milky Way, such as the inner disk, thick disk, and flared outer disk. A principal component analysis suggests that most of the observed structure is low-dimensional and can be explained by a few eigenvectors. We find that some, but not all, of the effects in the low-αdisk can be explained by dilution with fresh gas, so that the abundance ratios resemble those of stars with higher metallicity. The patterns and maps we provide can be combined with accurate forward models of nucleosynthesis, star formation, and gas infall to provide a more detailed picture of star and element formation in different Milky Way components.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Abstract The “two-process model” is a promising technique for interpreting stellar chemical abundance data from large-scale surveys (e.g., the Sloan Digital Sky Survey IV/V and the Galactic Archeology with HERMES survey), enabling more quantitative empirical studies of differences in chemical enrichment history between galaxies without relying on detailed yield and evolution models. In this work, we fit two-process model parameters to (1) a luminous giant Milky Way (MW) sample and (2) stars comprising the Sagittarius dwarf galaxy (Sgr). We then use these two sets of model parameters to predict the abundances of 14 elements of stars belonging to the MW and in five of its massive satellite galaxies, analyzing the residuals between the predicted and observed abundances. We find that the model fit to (1) results in large residuals (0.1–0.3 dex) for most metallicity-dependent elements in the metal-rich ([Mg/H] > −0.8) stars of the satellite galaxies. However, the model fit to (2) results in small or no residuals for all elements across all satellite galaxies. Therefore, despite the wide variation in [X/Mg]–[Mg/H] abundance patterns of the satellite galaxies, the two-process framework provides an accurate characterization of their abundance patterns across many elements, but these multielement patterns are systematically different between the dwarf galaxy satellites and the MW disks. We consider a variety of scenarios for the origin of this difference, highlighting the possibility that a large inflow of pristine gas to the MW disk diluted the metallicity of star-forming gas without changing abundance ratios.more » « less
-
Abstract The first generations of stars left their chemical fingerprints on metal-poor stars in the Milky Way and its surrounding dwarf galaxies. While instantaneous and homogeneous enrichment implies that groups of conatal stars should have the same element abundances, small amplitudes of abundance scatter are seen at fixed [Fe/H]. Measurements of intrinsic abundance scatter have been made with small high-resolution spectroscopic data sets where measurement uncertainty is small compared to this scatter. In this work, we present a method to use mid-resolution survey data, which have larger errors, to make this measurement. Using APOGEE Data Release 17, we calculate the intrinsic scatter of Al, O, Mg, Si, Ti, Ni, and Mn relative to Fe for 333 metal-poor stars across six classical dwarf galaxies around the Milky Way, and 1604 stars across 19 globular clusters (GCs). We calibrate the reported abundance errors in bins of signal-to-noise ratio and [Fe/H] using a high-fidelity halo data set. Applying these calibrated errors to the APOGEE data, we find small amplitudes of average intrinsic abundance scatter in dwarf galaxies ranging from 0.03 to 0.09 dex, with a median value of 0.047 dex. For the GCs, we find intrinsic scatters ranging from 0.01 to 0.11 dex, with particularly high scatter for Al and O. Our measurements of intrinsic abundance scatter place important upper bounds, which are limited by our calibration, on the intrinsic scatter in these systems, as well as constraints on their underlying star formation history and mixing that we can look to simulations to interpret.more » « less
-
Abstract We present an atmospheric retrieval analysis on a set of young, cloudy, red L dwarfs—CWISER J124332.12+600126.2 (BD+60 1417B) and WISEP J004701.06+680352.1 (W0047)—using the Brewster retrieval framework. We also present the first elemental abundance measurements of the young K-dwarf (K0) host star, BD+60 1417, using high-resolution (R= 50,000) spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope. In the complex cloudy L-dwarf regime the emergence of condensate cloud species complicates retrieval analysis when only near-infrared data are available. We find that for both L dwarfs in this work, despite testing three different thermal profile parameterizations we are unable to constrain reliable abundance measurements and thus the carbon-to-oxygen ratio. While we cannot conclude what the abundances are, we can conclude that the data strongly favor a cloud model over a cloudless model. We note that the difficulty in retrieval constraints persists regardless of the signal-to-noise ratio of the data examined (S/N ∼ 10 for CWISER BD+60 1417B and 40 for WISEP W0047). The results presented in this work provide valuable lessons about retrieving young, low-surface-gravity cloudy L dwarfs. This work provides continued evidence of missing information in models and the crucial need for JWST to guide and inform retrieval analysis in this regime.more » « less
-
Abstract The element abundance pattern found in Milky Way disk stars is close to two-dimensional, dominated by production from one prompt process and one delayed process. This simplicity is remarkable, since the elements are produced by a multitude of nucleosynthesis mechanisms operating in stars with a wide range of progenitor masses. We fit the abundances of 14 elements for 48,659 red-giant stars from APOGEE Data Release 17 using a flexible, data-drivenK-process model—dubbedKPM. In our fiducial model, withK= 2, each abundance in each star is described as the sum of a prompt and a delayed process contribution. We find thatKPMwithK= 2 is able to explain the abundances well, recover the observed abundance bimodality, and detect the bimodality over a greater range in metallicity than has previously been possible. We compare to prior work by Weinberg et al., finding thatKPMproduces similar results, but thatKPMbetter predicts stellar abundances, especially for the elements C+N and Mn and for stars at supersolar metallicities. The model fixes the relative contribution of the prompt and delayed processes to two elements to break degeneracies and improve interpretability; we find that some of the nucleosynthetic implications are dependent upon these detailed choices. We find that moving to four processes adds flexibility and improves the model’s ability to predict the stellar abundances, but does not qualitatively change the story. The results ofKPMwill help us to interpret and constrain the formation of the Galaxy disk, the relationship between abundances and ages, and the physics of nucleosynthesis.more » « less
-
Abstract The scale ofα-element yields is difficult to predict from theory because of uncertainties in massive star evolution, supernova physics, and black hole formation, and it is difficult to constrain empirically because the impact of higher yields can be compensated by greater metal loss in galactic winds. We use a recent measurement of the mean iron yield of core collapse supernovae (CCSN) by Rodriguez et al., , to infer the scale ofα-element yields by assuming that the plateau of [α/Fe] abundance ratios observed in low-metallicity stars represents the yield ratio of CCSN. For a plateau at [α/Fe]cc= 0.45, we find that the population-averaged yields of O and Mg are about equal to the solar abundance of these elements, , where is the mass of element X produced by massive stars per unit mass of star formation. The inferred O and Fe yields agree with predictions of the Sukhbold et al. CCSN models assuming their Z9.6+N20 neutrino-driven engine, a scenario in which many progenitors withM< 40M⊙implode to black holes rather than exploding. The yields are lower than assumed in many models of the galaxy mass–metallicity relation, reducing the level of outflows needed to match observed abundances. Our one-zone chemical evolution models with evolve to solar metallicity at late times. By further requiring that models reach [α/Fe] ≈ 0 at late times, we infer a Hubble-time integrated Type Ia supernova rate of , compatible with estimates from supernova surveys.more » « less
An official website of the United States government
