skip to main content


Title: KPM: A Flexible and Data-driven K-process Model for Nucleosynthesis
Abstract

The element abundance pattern found in Milky Way disk stars is close to two-dimensional, dominated by production from one prompt process and one delayed process. This simplicity is remarkable, since the elements are produced by a multitude of nucleosynthesis mechanisms operating in stars with a wide range of progenitor masses. We fit the abundances of 14 elements for 48,659 red-giant stars from APOGEE Data Release 17 using a flexible, data-drivenK-process model—dubbedKPM. In our fiducial model, withK= 2, each abundance in each star is described as the sum of a prompt and a delayed process contribution. We find thatKPMwithK= 2 is able to explain the abundances well, recover the observed abundance bimodality, and detect the bimodality over a greater range in metallicity than has previously been possible. We compare to prior work by Weinberg et al., finding thatKPMproduces similar results, but thatKPMbetter predicts stellar abundances, especially for the elements C+N and Mn and for stars at supersolar metallicities. The model fixes the relative contribution of the prompt and delayed processes to two elements to break degeneracies and improve interpretability; we find that some of the nucleosynthetic implications are dependent upon these detailed choices. We find that moving to four processes adds flexibility and improves the model’s ability to predict the stellar abundances, but does not qualitatively change the story. The results ofKPMwill help us to interpret and constrain the formation of the Galaxy disk, the relationship between abundances and ages, and the physics of nucleosynthesis.

 
more » « less
NSF-PAR ID:
10490074
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
167
Issue:
3
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 98
Size(s):
["Article No. 98"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a “prompt” component tracing core-collapse supernovae and a “delayed” component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals Δ[X/H] from this two-parameter fit. The rms residuals range from ∼0.01–0.03 dex for the most precisely measured APOGEE abundances to ∼0.1 dex for Na, V, and Ce. Thecorrelationsof residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [α/Fe]. Relative to the main disk (R= 3–13 kpc), we find nearly identical abundance patterns in the outer disk (R= 15–17 kpc), 0.05–0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4–1 dex) of multiple elements inωCen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements.

     
    more » « less
  2. Abstract We investigate the [X/Mg] abundances of 16 elements for 82,910 Galactic disk stars from GALAH+ DR3. We fit the median trends of low-Ia and high-Ia populations with a two-process model, which describes stellar abundances in terms of a prompt core-collapse and delayed Type-Ia supernova component. For each sample star, we fit the amplitudes of these two components and compute the residual Δ[X/H] abundances from this two-parameter fit. We find rms residuals ≲0.07 dex for well-measured elements and correlated residuals among some elements (such as Ba, Y, and Zn) that indicate common enrichment sources. From a detailed investigation of stars with large residuals, we infer that roughly 40% of the large deviations are physical and 60% are caused by problematic data such as unflagged binarity, poor wavelength solutions, and poor telluric subtraction. As one example of a population with distinctive abundance patterns, we identify 15 stars that have 0.3–0.6 dex enhancements of Na but normal abundances of other elements from O to Ni and positive average residuals of Cu, Zn, Y, and Ba. We measure the median elemental residuals of 14 open clusters, finding systematic ∼0.1–0.4 dex enhancements of O, Ca, K, Y, and Ba and ∼0.2 dex depletion of Cu in young clusters. Finally, we present a restricted three-process model where we add an asymptotic giant branch star (AGB) component to better fit Ba and Y. With the addition of the third process, we identify a population of stars, preferentially young, that have much higher AGB enrichment than expected from their SNIa enrichment. 
    more » « less
  3. Abstract

    We demonstrate that using up to seven stellar abundance ratios can place observational constraints on the star formation histories (SFHs) of Local Group dSphs, using Sculptor dSph as a test case. We use a one-zone chemical evolution model to fit the overall abundance patterns ofαelements (which probe the core-collapse supernovae that occur shortly after star formation),s-process elements (which probe AGB nucleosynthesis at intermediate delay times), and iron-peak elements (which probe delayed Type Ia supernovae). Our best-fit model indicates that Sculptor dSph has an ancient SFH, consistent with previous estimates from deep photometry. However, we derive a total star formation duration of ∼0.9 Gyr, which is shorter than photometrically derived SFHs. We explore the effect of various model assumptions on our measurement and find that modifications to these assumptions still produce relatively short SFHs of duration ≲1.4 Gyr. Our model is also able to compare sets of predicted nucleosynthetic yields for supernovae and AGB stars, and can provide insight into the nucleosynthesis of individual elements in Sculptor dSph. We find that observed [Mn/Fe] and [Ni/Fe] trends are most consistent with sub-MChType Ia supernova models, and that a combination of “prompt” (delay times similar to core-collapse supernovae) and “delayed” (minimum delay times ≳50 Myr)r-process events may be required to reproduce observed [Ba/Mg] and [Eu/Mg] trends.

     
    more » « less
  4. Context. Phosphorus (P) is considered to be one of the key elements for life, making it an important element to look for in the abundance analysis of spectra of stellar systems. Yet, only a select number of spectroscopic studies exist to estimate the phosphorus abundances and investigate its trend across a range of metallicities. This is due to the lack of good phosphorus lines in the optical wavelength region and the requirement of careful manual analysis of the blended phosphorus lines in near-infrared H-band spectra obtained with individual observations and surveys such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Aims. Based on a consistent and systematic analysis of high-resolution, near-infrared Immersion GRating INfrared Spectrograph (IGRINS) spectra of 38 K giant stars in the Solar neighborhood, we present and investigate the phosphorus abundance trend in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex. Furthermore, we compare this trend with the available chemical evolution models to shed some light on the origin and evolution of phosphorus. Methods. We have observed full H - and K -band spectra at a spectral resolving power of R = 45 000 with IGRINS mounted on the Gemini South telescope, the Discovery Channel Telescope, and the Harlan J Smith Telescope at McDonald Observatory. Abundances were determined from spectral lines by modeling the synthetic spectrum that best matches the observed spectrum by χ 2 minimization. For this task, we used the Spectroscopy Made Easy (SME) tool in combination with one-dimensional (1D) Model Atmospheres in a Radiative and Convective Scheme (MARCS) stellar atmosphere models. The investigated sample of stars have reliable stellar parameters estimated using optical FIber-fed Echelle Spectrograph (FIES) spectra obtained in a previous study of a set of stars called Giants in the Local Disk (GILD). In order to determine the phosphorus abundances from the 16482.92 Å phosphorus line, we needed to take special care blending the CO( v = 7−4) line. With the stellar parameters known, we thus determined the C, N, and O abundances from atomic carbon and a range of nonblended molecular lines (CO, CN, and OH) which are plentiful in the H-band region of K giant stars, assuring an appropriate modeling of the blending CO( v = 7−4) line. Results. We present the [P/Fe] versus [Fe/H] trend for K giant stars in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex and enhanced phosphorus abundances for two metal-poor s-rich stars. We find that our trend matches well with the compiled literature sample of prominently dwarf stars and the limited number of giant stars. Our trend is found to be higher by ~0.05−0.1 dex compared to the theoretical chemical evolution trend resulting from the core collapse supernova (type II) of massive stars with the phosphorus yields arbitrarily increased by a factor of 2.75. Thus the enhancement factor might need to be ~0.05−0.1 dex higher to match our trend. We also find an empirically determined primary behavior for phosphorus. Furthermore, the phosphorus abundance is found to be elevated by ~0.6−0.9 dex in the two s-enriched stars compared to the theoretical chemical evolution trend. 
    more » « less
  5. Aims. Various nucleosynthesis studies have pointed out that the r -process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, and rank tests of elemental abundances), we look for causally correlated elemental abundance patterns and attempt to link them to astrophysical events. Some of these events produce the r -process elements jointly with iron, while others do not have any significant iron contribution. We try to (a) characterize these different types of events by their abundance patterns and (b) identify them among the existing set of suggested r -process sites. Methods. The Pearson and Spearman correlation coefficients were used in order to investigate correlations among r -process elements (X,Y) as well as their relation to iron (Fe) in VMP halo stars. We gradually tracked the evolution of those coefficients in terms of the element enrichments [X/Fe] or [X/Y] and the metallicity [Fe/H]. This approach, aided by cluster analysis to find different structures of abundance patterns and rank tests to identify whether several events contributed to the observed pattern, is new and provides deeper insights into the abundances of VMP stars. Results. In the early stage of our Galaxy, at least three r -process nucleosynthesis sites have been active. The first two produce and eject iron and the majority of the lighter r -process elements. We assign them to two different types of core-collapse events, not identical to regular core-collapse supernovae (CCSNe), which produce only light trans-Fe elements. The third category is characterized by a strong r -process and is responsible for the major fraction of the heavy main r -process elements without a significant coproduction of Fe. It does not appear to be connected to CCSNe, in fact most of the Fe found in the related r -process enriched stars must come from previously occurring CCSNe. The existence of actinide boost stars indicates a further division among strong r -process sites. We assign these two strong r -process sites to neutron star mergers without fast black hole formation and to events where the ejecta are dominated by black hole accretion disk outflows. Indications from the lowest-metallicity stars hint at a connection with massive single stars (collapsars) forming black holes in the early Galaxy. 
    more » « less