skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2202598

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The recent advancement in additive manufacturing (AM) leads to an extensive need for an industrial workforce in the near future. Workforce training in AM requires expensive capital investment for installing and maintaining this technology and proper knowledge about potential safety hazards. Traditional classroom settings often fail to bridge the critical gap between textbook learning and practical applications. Virtual reality (VR) training can simulate real‐world scenarios in a safe and controlled environment and improve student involvement to foster practical learning. In this paper, a virtual training platform for 3D printing has been developed and studied to improve AM education. The developed environment contains a selective laser sintering printer, a preparation station with necessary supplies, a control panel for process planning, and a post‐processing station. This platform provides students with excellent learning opportunities to gain hands‐on experiences and critical engineering skills on operating process parameters and safety measures. Undergraduate students majoring in industrial engineering were exposed to this learning approach to enhance their engagement and cognitive processing skills. Students' attentions were measured using eye metrics (fixation duration and preference index), and their exposure experiences were collected through the simulation sickness questionnaire, presence questionnaire, and system usability scale. Pre‐ and post‐VR training questionnaires and performance metrics (task completion time and accuracy) evaluated students' learning outcomes. Results provide valuable insights into students' attention, performance, and satisfaction with virtual training environments. Users' gaze behavior and subjective responses revealed many challenges that will help future researchers develop assistive instructions within this virtual educational platform. 
    more » « less
  2. In manufacturing industries, equipment arrangement, and layout design are critical factors that directly influence productivity, workplace safety, and workers’ performance. Link analysis, as a human factors approach, has been widely used in industries for many years to improve layout design and machinery arrangement. This approach considers humans' physical and cognitive capabilities and movement limitations to find an optimal design. Virtual reality significantly impacts our society from product design to worker training. Hence, effective virtual training platforms require the same attention to layout design as manufacturing work settings which offer efficient testing of multiple layouts. This research focuses on developing a virtual 3D printing laboratory for workforce training and has used a link analysis and user perception study to improve the layout of the virtual workplace. The research demonstrates the importance of layout design in virtual training platforms and the potential benefits of utilizing link analysis in optimizing layout design. 
    more » « less
  3. Innovative technologies such as virtual reality and additive manufacturing have been drastically changing our society, from how we design and manufacture products to how to educate and train the next-generation workforce. This paper reviews scientific studies on virtual reality assisted manufacturing education published from 2015 to 2022 from three different perspectives: targeted manufacturing disciplines/topics, virtual environment development, and outcome evaluation methods. This paper also summarizes the critical limitations of existing studies and identifies the key challenges in the field. Furthermore, some future research directions are discussed aiming to advance current manufacturing education and deliver a highly skilled workforce for U.S. future manufacturing. 
    more » « less