skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The use of virtual reality in manufacturing education: State-of-the-art and future directions
Innovative technologies such as virtual reality and additive manufacturing have been drastically changing our society, from how we design and manufacture products to how to educate and train the next-generation workforce. This paper reviews scientific studies on virtual reality assisted manufacturing education published from 2015 to 2022 from three different perspectives: targeted manufacturing disciplines/topics, virtual environment development, and outcome evaluation methods. This paper also summarizes the critical limitations of existing studies and identifies the key challenges in the field. Furthermore, some future research directions are discussed aiming to advance current manufacturing education and deliver a highly skilled workforce for U.S. future manufacturing.  more » « less
Award ID(s):
2202598
PAR ID:
10507452
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ScienceDirect
Date Published:
Journal Name:
Manufacturing Letters
Volume:
35
Issue:
S
ISSN:
2213-8463
Page Range / eLocation ID:
1214 to 1221
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task. We also reviewed the applications of XR in other vocational domains and how they can be leveraged in the manufacturing industry. We finally present some current barriers to XR adoption in manufacturing training and highlight the current limitations that should be considered when looking to develop and apply practical applications of XR. 
    more » « less
  2. null (Ed.)
    Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys. 
    more » « less
  3. Abstract The recent advancement in additive manufacturing (AM) leads to an extensive need for an industrial workforce in the near future. Workforce training in AM requires expensive capital investment for installing and maintaining this technology and proper knowledge about potential safety hazards. Traditional classroom settings often fail to bridge the critical gap between textbook learning and practical applications. Virtual reality (VR) training can simulate real‐world scenarios in a safe and controlled environment and improve student involvement to foster practical learning. In this paper, a virtual training platform for 3D printing has been developed and studied to improve AM education. The developed environment contains a selective laser sintering printer, a preparation station with necessary supplies, a control panel for process planning, and a post‐processing station. This platform provides students with excellent learning opportunities to gain hands‐on experiences and critical engineering skills on operating process parameters and safety measures. Undergraduate students majoring in industrial engineering were exposed to this learning approach to enhance their engagement and cognitive processing skills. Students' attentions were measured using eye metrics (fixation duration and preference index), and their exposure experiences were collected through the simulation sickness questionnaire, presence questionnaire, and system usability scale. Pre‐ and post‐VR training questionnaires and performance metrics (task completion time and accuracy) evaluated students' learning outcomes. Results provide valuable insights into students' attention, performance, and satisfaction with virtual training environments. Users' gaze behavior and subjective responses revealed many challenges that will help future researchers develop assistive instructions within this virtual educational platform. 
    more » « less
  4. Virtual reality offers vast possibilities to enhance the conventional approach for delivering engineering education. The introduction of virtual reality technology into teaching can improve the undergraduate mechanical engineering curriculum by supplementing the traditional learning experience with outside-the-classroom materials. The Center for Aviation and Automotive Technological Education using Virtual E-Schools (CA2VES), in collaboration with the Clemson University Center for Workforce Development (CUCWD), has developed a comprehensive virtual reality-based learning system. The available e-learning materials include eBooks, mini-video lectures, three-dimensional virtual reality technologies, and online assessments. Select VR-based materials were introduced to students in a sophomore level mechanical engineering laboratory course via fourteen online course modules during a four-semester period. To evaluate the material, a comparison of student performance with and without the material, along with instructor feedback, was completed. Feedback from the instructor and the teaching assistant revealed that the material was effective in improving the laboratory safety and boosted student’s confidence in handling engineering tools. 
    more » « less
  5. Abstract Although there is a substantial growth in the Additive Manufacturing (AM) market commensurate with the demand for products produced by AM methods, there is a shortage of skilled designers in the workforce that can apply AM effectively to meet this demand. This is due to the innate complications with cost and infrastructure for high-barrier-to-entry AM processes such as powder bed fusion when attempting to educate designers about these processes through in-person learning. To meet the demands for a skilled AM workforce while also accounting for the limited access to the range of AM processes, it is important to explore other mediums of AM education such as computer-aided instruction (CAI) which can increase access to hands-on learning experiences. Therefore, the purpose of this paper is to analyze the use of CAI in AM process education and focus on its effects on knowledge gain and cognitive load. Our findings show that when designers are educated about material extrusion and powder bed fusion through CAI, the knowledge gain for powder bed fusion is significantly different than knowledge gain for material extrusion, with no significant difference in cognitive load between these two AM processes. These findings imply that there is potential in virtual mediums to improve a designer’s process-centric knowledge for the full range of AM processes including those that are usually inaccessible. We take these findings to begin developing recommendations and guidelines for the use of virtual mediums in AM education and future research that investigates implications for virtual AM education. 
    more » « less