skip to main content


Search for: All records

Award ID contains: 2204788

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 31, 2024
  2. Abstract In the present work we provide a characterization of the ground states of a higher-dimensional quadratic-quartic model of the nonlinear Schrödinger class with a combination of a focusing biharmonic operator with either an isotropic or an anisotropic defocusing Laplacian operator (at the linear level) and power-law nonlinearity. Examining principally the prototypical example of dimension d = 2, we find that instability arises beyond a certain threshold coefficient of the Laplacian between the cubic and quintic cases, while all solutions are stable for powers below the cubic. Above the quintic, and up to a critical nonlinearity exponent p , there exists a progressively narrowing range of stable frequencies. Finally, above the critical p all solutions are unstable. The picture is rather similar in the anisotropic case, with the difference that even before the cubic case, the numerical computations suggest an interval of unstable frequencies. Our analysis generalizes the relevant observations for arbitrary combinations of Laplacian prefactor b and nonlinearity power p . 
    more » « less