skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205500

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract TESS and Kepler have revealed that practically all close-in sub-Neptunes form in mean-motion resonant chains, most of which unravel on timescales of 100 Myr. UsingN-body integrations, we study how planetary collisions from destabilized resonant chains produce the orbital period distribution observed among mature systems, focusing on the resonant fine structures remaining post-instability. In their natal chains, planets near first-order resonances have period ratios just wide of perfect commensurability, driven there by disk migration and eccentricity damping. Sufficiently large resonant libration amplitudes are needed to trigger instability. Ensuing collisions between planets (“major mergers”) erode but do not eliminate resonant pairs; surviving pairs show up as narrow “peaks” just wide of commensurability in the histogram of neighboring-planet period ratios. Merger products exhibit a broad range of period ratios, filling the space between relatively closely separated resonances such as the 5:4, 4:3, and 3:2, but failing to bridge the wider gap between the 3:2 and 2:1—a “trough” thus manifests just short of the 2:1 resonance, as observed. Major mergers generate debris that undergoes “minor mergers” with planets, in many cases further widening resonant pairs. With all this dynamical activity, free eccentricities of resonant pairs, and by extension the phases of their transit timing variations, are readily excited. Nonresonant planets, being merger products, are predicted to have higher masses than resonant planets, as observed. At the same time, a small fraction of mergers produce a high-mass tail in the resonant population, also observed. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026
  2. ABSTRACT Many dozens of circumstellar discs show signatures of sculpting by planets. To help find these protoplanets by direct imaging, we compute their broadband spectral energy distributions, which overlap with the JWST and ALMA (Atacama Large Millimeter Array) passbands. We consider how circumplanetary spherical envelopes and circumplanetary discs are heated by accretion and irradiation. Searches with JWST’s NIRCam (Near-Infrared Camera) and the blue portion of MIRI (Mid-Infrared Instrument) are most promising since $$\sim$$300–1000 K protoplanets outshine their $$\sim$$20–50 K circumstellar environs at wavelengths of $$\sim$$2–10 $$\mu$$m. Detection is easier if circumplanetary dust settles into discs (more likely for more massive planets) or is less abundant per unit mass gas (because of grain growth or aerodynamic filtration). At wavelengths longer than 20 $$\mu$$m, circumplanetary material is difficult to see against the circumstellar disc’s surface layers that directly absorb starlight and reprocess it to the far-infrared. Such contaminating circumstellar emission can be serious even within the evacuated gaps observed by ALMA. Only in strongly depleted regions, like the cavity of the transitional disc PDS 70 where two protoplanets have been confirmed, may long-wavelength windows open for protoplanet study. We compile a list of candidate protoplanets and identify those with potentially the highest accretion luminosities, all peaking in the near-infrared. 
    more » « less
  3. ABSTRACT The orbits of some warm Jupiters are highly inclined (20°–50°) to those of their exterior companions. Comparable misalignments are inferred between the outer and inner portions of some transition discs. These large inclinations may originate from planet–planet and planet–disc secular resonances that sweep across interplanetary space as parent discs disperse. The maximum factor by which a seed mutual inclination can be amplified is of the order of the square root of the angular momentum ratio of the resonant pair. We identify those giant planet systems (e.g. Kepler-448 and Kepler-693) that may have crossed a secular resonance, and estimate the required planet masses and semimajor axes in transition discs needed to warp their innermost portions (e.g. in CQ Tau). Passage through an inclination secular resonance could also explain the hypothesized large mutual inclinations in apsidally-orthogonal warm Jupiter systems (e.g. HD 147018). 
    more » « less
  4. ABSTRACT The hunt is on for dozens of protoplanets hypothesized to reside in protoplanetary discs with imaged gaps. How bright these planets are, and what they will grow to become, depend on their accretion rates, which may be in the runaway regime. Using 3D global simulations, we calculate maximum gas accretion rates for planet masses Mp from 1$$\, \mathrm{ M}_{{\oplus }}$$ to $$10\, \mathrm{ M}_{\rm J}$$. When the planet is small enough that its sphere of influence is fully embedded in the disc, with a Bondi radius rBondi smaller than the disc’s scale height Hp – such planets have thermal mass parameters qth ≡ (Mp/M⋆)/(Hp/Rp)3 ≲ 0.3, for host stellar mass M⋆ and orbital radius Rp – the maximum accretion rate follows a Bondi scaling, with $$\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^2 / (H_{\rm p}/R_{\rm p})^3$$ for ambient disc density ρg. For more massive planets with 0.3 ≲ qth ≲ 10, the Hill sphere replaces the Bondi sphere as the gravitational sphere of influence, and $$\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^1$$, with no dependence on Hp/Rp. In the strongly superthermal limit when qth ≳ 10, the Hill sphere pops well out of the disc, and $$\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^{2/3} (H_{\rm p}/R_{\rm p})^1$$. Applied to the two confirmed protoplanets PDS 70b and c, our numerically calibrated maximum accretion rates imply that their Jupiter-like masses may increase by up to a factor of ∼2 before their parent disc dissipates. 
    more » « less