Abstract Systems with ultra-short-period (USP) planets tend to possess larger mutual inclinations compared to those with planets located farther from their host stars. This could be explained due to precession caused by stellar oblateness at early times when the host star was rapidly spinning. However, stellar oblateness reduces over time due to the decrease in the stellar rotation rate, and this may further shape the planetary mutual inclinations. In this work, we investigate in detail how the final mutual inclination varies under the effect of a decreasing J 2 . We find that different initial parameters (e.g., the magnitude of J 2 and planetary inclinations) will contribute to different final mutual inclinations, providing a constraint on the formation mechanisms of USP planets. In general, if the inner planets start in the same plane as the stellar equator (or coplanar while misaligned with the stellar spin axis), the mutual inclination decreases (or increases then decreases) over time due to the decay of the J 2 moment. This is because the inner orbit typically possesses less orbital angular momentum than the outer ones. However, if the outer planet is initially aligned with the stellar spin while the inner one is misaligned, the mutual inclination nearly stays the same. Overall, our results suggest that either USP planets formed early and acquired significant inclinations (e.g., ≳30° with its companion or ≳10° with its host star spin axis for Kepler-653 c) or they formed late (≳Gyr) when their host stars rotated slower.
more »
« less
Sweeping secular resonances and giant planet inclinations in transition discs
ABSTRACT The orbits of some warm Jupiters are highly inclined (20°–50°) to those of their exterior companions. Comparable misalignments are inferred between the outer and inner portions of some transition discs. These large inclinations may originate from planet–planet and planet–disc secular resonances that sweep across interplanetary space as parent discs disperse. The maximum factor by which a seed mutual inclination can be amplified is of the order of the square root of the angular momentum ratio of the resonant pair. We identify those giant planet systems (e.g. Kepler-448 and Kepler-693) that may have crossed a secular resonance, and estimate the required planet masses and semimajor axes in transition discs needed to warp their innermost portions (e.g. in CQ Tau). Passage through an inclination secular resonance could also explain the hypothesized large mutual inclinations in apsidally-orthogonal warm Jupiter systems (e.g. HD 147018).
more »
« less
- Award ID(s):
- 2205500
- PAR ID:
- 10479299
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 7203-7216
- Size(s):
- p. 7203-7216
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Before the launch of the Kepler Space Telescope, models of low-mass planet formation predicted that convergent type I migration would often produce systems of low-mass planets in low-order mean-motion resonances. Instead, Kepler discovered that systems of small planets frequently have period ratios larger than those associated with mean-motion resonances and rarely have period ratios smaller than those associated with mean-motion resonances. Both short-timescale processes related to the formation or early evolution of planetary systems and long-timescale secular processes have been proposed as explanations for these observations. Using a thin disk stellar population’s Galactic velocity dispersion as a relative age proxy, we find that Kepler-discovered multiple-planet systems with at least one planet pair near a period ratio suggestive of a second-order mean-motion resonance have a colder Galactic velocity dispersion and are therefore younger than both single-transiting and multiple-planet systems that lack planet pairs consistent with mean-motion resonances. We argue that a nontidal secular process with a characteristic timescale no less than a few hundred Myr is responsible for moving systems of low-mass planets away from second-order mean-motion resonances. Among systems with at least one planet pair near a period ratio suggestive of a first-order mean-motion resonance, only the population of systems likely affected by tidal dissipation inside their innermost planets has a small Galactic velocity dispersion and is therefore young. We predict that period ratios suggestive of mean-motion resonances are more common in young systems with 10 Myr ≲τ≲ 100 Myr and become less common as planetary systems age.more » « less
-
Abstract Exoplanet systems are thought to evolve on secular timescales over billions of years. This evolution is impossible to directly observe on human timescales in most individual systems. While the availability of accurate and precise age inferences for individual exoplanet host stars with agesτin the interval 1 Gyr ≲τ≲ 10 Gyr would constrain this evolution, accurate and precise age inferences are difficult to obtain for isolated field dwarfs like the host stars of most exoplanets. The Galactic velocity dispersion of a thin-disk stellar population monotonically grows with time, and the relationship between age and velocity dispersion in a given Galactic location can be calibrated by a stellar population for which accurate and precise age inferences are possible. Using a sample of subgiants with precise age inferences, we calibrate the age–velocity dispersion relation in the Kepler field. Applying this relation to the Kepler field’s planet populations, we find that Kepler-discovered systems plausibly in second-order mean-motion resonances have 1 Gyr ≲τ≲ 2 Gyr. The same is true for systems plausibly in first-order mean-motion resonances, but only for systems likely affected by tidal dissipation inside their innermost planets. These observations suggest that many planetary systems diffuse away from initially resonant configurations on secular timescales. Our calibrated relation also indicates that ultra-short-period (USP) planet systems have typical ages in the interval 5 Gyr ≲τ≲ 6 Gyr. We propose that USP planets tidally migrated from initial periods in the range 1 day ≲P≲ 2 days to their observed locations atP< 1 day over billions of years and trillions of cycles of secular eccentricity excitation and inside-planet damping.more » « less
-
Abstract There is a complex inclination structure present in the trans-Neptunian object (TNO) orbital distribution in the main classical-belt region (between orbital semimajor axes of 39 and 48 au). The long-term gravitational effects of the giant planets make TNO orbits precess, but nonresonant objects maintain a nearly constant “free” inclination (Ifree) with respect to a local forced precession pole. Because of the likely cosmogonic importance of the distribution of this quantity, we tabulate free inclinations for all main-belt TNOs, each individually computed using barycentric orbital elements with respect to each object’s local forcing pole. We show that the simplest method, based on the Laplace–Lagrange secular theory, is unable to give correct forcing poles for objects near theν18secular resonance, resulting in poorly conservedIfreevalues in much of the main belt. We thus instead implemented an averaged Hamiltonian to obtain the expected nodal precession for each TNO, yielding significantly more accurate free inclinations for nonresonant objects. For the vast majority (96%) of classical-belt TNOs, theseIfreevalues are conserved to < 1° over 4 Gyr numerical simulations, demonstrating the advantage of using this well-conserved quantity in studies of the TNO population and its primordial inclination profile; our computed distributions only reinforce the idea of a very coplanar surviving “cold” primordial population, overlain by a largeI-width implanted “hot” population.more » « less
-
Abstract A giant-impact origin for the Moon is generally accepted, but many aspects of lunar formation remain poorly understood and debated. Ćuk et al. proposed that an impact that left the Earth–Moon system with high obliquity and angular momentum could explain the Moon’s orbital inclination and isotopic similarity to Earth. In this scenario, instability during the Laplace Plane transition, when the Moon’s orbit transitions from the gravitational influence of Earth’s figure to that of the Sun, would both lower the system’s angular momentum to its present-day value and generate the Moon’s orbital inclination. Recently, Tian & Wisdom discovered new dynamical constraints on the Laplace Plane transition and concluded that the Earth–Moon system could not have evolved from an initial state with high obliquity. Here we demonstrate that the Earth–Moon system with an initially high obliquity can evolve into the present state, and we identify a spin–orbit secular resonance as a key dynamical mechanism in the later stages of the Laplace Plane transition. Some of the simulations by Tian & Wisdom did not encounter this late secular resonance, as their model suppressed obliquity tides and the resulting inclination damping. Our results demonstrate that a giant impact that left Earth with high angular momentum and high obliquity (θ> 61°) is a promising scenario for explaining many properties of the Earth–Moon system, including its angular momentum and obliquity, the geochemistry of Earth and the Moon, and the lunar inclination.more » « less
An official website of the United States government
