skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205553

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The relationship between the dynamics and structure of amorphous thin films and nanocomposites near their glass transition is an important problem in soft-matter physics. Here, we develop a simple theoretical approach to describe the density profile and the a-relaxation time of a glycerol-silica nanocomposite (S. Cheng et al., J. Chem. Phys., 2015, 143, 194704). We begin by applying the Derjaguin approximation, where we replace the curved surface of the particle with the planar one; thus, modeling the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular dynamics (MD) simulation data of Cheng et al., we approximate the density profile of a supported liquid thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct an appropriate density functional, from which the density profile emerges through the minimization of free energy. Our final assumption is that of a consistent, temperature-independent scaled density profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation time and temperature, we can employ Doolittle-type analysis (‘‘naı ¨ ve’’ free-volume model), to calculate the relaxation time based on temperature and film thickness. We then convert the film thickness into the interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare our model predictions with experimental data, resulting in a good agreement. The proposed approach can be easily extended to other nanocomposite and film systems. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026
  2. Reductions of the self-consistent mean field theory model of amphiphilic molecules in solvent can lead to a singular family of functionalized Cahn-Hilliard (FCH) energies. We modify these energies, mollifying the singularities to stabilize the computation of the gradient flows and develop a series of benchmark problems that emulate the “morphological complexity” observed in experiments. These benchmarks investigate the delicate balance between the rate of absorption of amphiphilic material onto an interface and a least energy mechanism to disperse the arriving mass. The re- sult is a trichotomy of responses in which two-dimensional interfaces either lengthen by a regularized motion against curvature, undergo pearling bifurcations, or split di- rectly into networks of interfaces. We evaluate a number of schemes that use second or- der backward differentiation formula (BDF2) type time stepping coupled with Fourier pseudo-spectral spatial discretization. The BDF2-type schemes are either based on a fully implicit time discretization with a preconditioned steepest descent (PSD) nonlin- ear solver or upon linearly implicit time discretization based on the standard implicit- explicit (IMEX) and the scalar auxiliary variable (SAV) approaches. We add an ex- ponential time differencing (ETD) scheme for comparison purposes. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026