Abstract We consider a family of variable time-stepping Dahlquist-Liniger-Nevanlinna (DLN) schemes, which is unconditionally non-linear stable and second order accurate, for the Allen-Cahn equation. The finite element methods are used for the spatial discretization. For the non-linear term, we combine the DLN scheme with two efficient temporal algorithms: partially implicit modified algorithm and scalar auxiliary variable algorithm. For both approaches, we prove the unconditional, long-term stability of the model energy under any arbitrary time step sequence. Moreover, we provide rigorous error analysis for the partially implicit modified algorithm with variable time-stepping. Efficient time-adaptive algorithms based on these schemes are also proposed. Several one- and two-dimensional numerical tests are presented to verify the properties of the proposed time-adaptive DLN methods.
more »
« less
This content will become publicly available on January 1, 2026
Benchmark Computation of Morphological Complexity in the Functionalized Cahn-Hilliard Gradient Flow
Reductions of the self-consistent mean field theory model of amphiphilic molecules in solvent can lead to a singular family of functionalized Cahn-Hilliard (FCH) energies. We modify these energies, mollifying the singularities to stabilize the computation of the gradient flows and develop a series of benchmark problems that emulate the “morphological complexity” observed in experiments. These benchmarks investigate the delicate balance between the rate of absorption of amphiphilic material onto an interface and a least energy mechanism to disperse the arriving mass. The re- sult is a trichotomy of responses in which two-dimensional interfaces either lengthen by a regularized motion against curvature, undergo pearling bifurcations, or split di- rectly into networks of interfaces. We evaluate a number of schemes that use second or- der backward differentiation formula (BDF2) type time stepping coupled with Fourier pseudo-spectral spatial discretization. The BDF2-type schemes are either based on a fully implicit time discretization with a preconditioned steepest descent (PSD) nonlin- ear solver or upon linearly implicit time discretization based on the standard implicit- explicit (IMEX) and the scalar auxiliary variable (SAV) approaches. We add an ex- ponential time differencing (ETD) scheme for comparison purposes.
more »
« less
- PAR ID:
- 10618074
- Publisher / Repository:
- Global Science
- Date Published:
- Journal Name:
- Communications in Computational Physics
- Volume:
- 37
- Issue:
- 4
- ISSN:
- 1815-2406
- Page Range / eLocation ID:
- 877 to 920
- Subject(s) / Keyword(s):
- Phase field model benchmark computations adaptive time stepping functionalized Cahn-Hilliard
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study diagonally implicit Runge-Kutta (DIRK) schemes when applied to abstract evolution problems that fit into the Gelfand-triple framework. We introduce novel stability notions that are well-suited to this setting and provide simple, necessary and sufficient, conditions to verify that a DIRK scheme is stable in our sense and in Bochner-type norms. We use several popular DIRK schemes in order to illustrate cases that satisfy the required structural stability properties and cases that do not. In addition, under some mild structural conditions on the problem we can guarantee compactness of families of discrete solutions with respect to time discretization.more » « less
-
Abstract In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation with a gradient flow structure. Examples of such equations include the linear Fokker–Planck equation and the Keller–Segel equations. The two proposed schemes are first-order accurate in time, explicitly solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference implementation of the classical continuous finite element method. The fully discrete schemes are proved to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions.more » « less
-
The thermal radiative transfer (TRT) equations form an integro-differential system that describes the propagation and collisional interactions of photons. Computing accurate and efficient numerical solutions TRT are challenging for several reasons, the first of which is that TRT is defined on a high-dimensional phase space that includes the independent variables of time, space, and velocity. In order to reduce the dimensionality of the phase space, classical approaches such as the P$$_N$$ (spherical harmonics) or the S$$_N$$ (discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel approach: the hybrid discrete (H$$^T_N$$) approximation to the radiative thermal transfer equations. This approach acquires desirable properties of both P$$_N$$ and S$$_N$$, and indeed reduces to each of these approximations in various limits: H$$^1_N$$ $$\equiv$$ P$$_N$$ and H$$^T_0$$ $$\equiv$$ S$$_T$$. We prove that H$$^T_N$$ results in a system of hyperbolic partial differential equations for all $$T\ge 1$$ and $$N\ge 0$$. Another challenge in solving the TRT system is the inherent stiffness due to the large timescale separation between propagation and collisions, especially in the diffusive (i.e., highly collisional) regime. This stiffness challenge can be partially overcome via implicit time integration, although fully implicit methods may become computationally expensive due to the strong nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit require resolving the mean-free path between collisions, making such schemes prohibitively expensive. In this work we develop a numerical method that is based on a nodal discontinuous Galerkin discretization in space, coupled with a semi-implicit discretization in time. In particular, we make use of a second order explicit Runge-Kutta scheme for the streaming term and an implicit Euler scheme for the material coupling term. Furthermore, in order to solve the material energy equation implicitly after each predictor and corrector step, we linearize the temperature term using a Taylor expansion; this avoids the need for an iterative procedure, and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope limiter after each time step. Finally, we conduct several numerical experiments to verify the accuracy, efficiency, and robustness of the H$$^T_N$$ ansatz and the numerical discretizations.more » « less
-
In this paper, we consider Maxwell’s equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second order semi-implicit leap-frog and implicit trapezoidal temporal schemes. By performing detailed dispersion analysis for the semi-discrete and fully discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. This work is a continuation of our previous research on energy-stable numerical schemes for nonlinear dispersive optical media [6,7]. The results for the numerical dispersion analysis of the reduced linear model, considered in the present paper, can guide us in the optimal choice of discretization parameters for the more complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of Maxwell’s equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measuresmore » « less
An official website of the United States government
