Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The active learning student-centered teaching approach process-oriented guided inquiry learning (POGIL) is a stimulating peer-based pedagogical method gaining momentum based on reported students’ outcomes that align with STEM undergraduate goals and objectives and job market competencies. Specific advanced topics in biology are intractable to many undergraduate students and require innovative, collaborative methods to produce desired learning outcomes. Chemistry instructors originally designed POGIL, and while biology-based POGILs are present in the literature, there is a limited amount of POGILs available in molecular biology. Thus, the current article illustrates a POGIL exercise that explores the central dogma, a fundamental principle in molecular biology. The central dogma of molecular biology provides a framework for gene expression processes and describes the flow of genetic information in living organisms. The central dogma describes how DNA nucleotides are transcribed into RNA nucleotides and translated into proteins. This seminal concept of molecular biology is critical to student understanding in introductory and advanced biological sciences courses. The POGIL exercise is organized based on the learning cycle model associated with inquiry-focused teaching techniques. The learning cycle model promotes gradual concept comprehension and real-world utilization. An increase in molecular biology POGIL exercises is required to improve student understanding and course grades in molecular biology or related disciplines. Examining the efficacy of using the current molecular biology POGIL exercise is necessary from the perspectives of undergraduate students and biology faculty to fortify POGIL usage at colleges and universities.more » « lessFree, publicly-accessible full text available June 27, 2026
-
Three-dimensional (3D) holographic technology, like virtual, augmented, and mixed reality technology, is an emerging technology designed to improve learning outcomes in science, technology, engineering, and math (STEM) disciplines. Holograms provide unique opportunities to enhance students’ understanding of intractable concepts and processes using engaging visualization methods. Portable 3D holographic fans allow for the improved visualization of molecules, structures, pathways, and other STEM - related content that have the potential to elevate information acquisition in novel ways that extend beyond 2-D presentations and textbook figures. While the potentiality of this innovative technology is exciting, adopting 3D holographic materials in the STEM pedagogical and research environment requires producing literary evidence to justify usage in specific contexts and sufficient guidance on safety protocols. A review of 3D hologram technology revealed an inadequate amount of efficacy research. Quantitative and qualitative research studies involving STEM majors, faculty, and researchers constitute the engine that will drive the utilization of 3D hologram visualizations in STEM undergraduate, graduate, and professional school classrooms and laboratories. The current article reviews relevant research findings and discusses the potential impacts of 3D hologram technology in teaching, research, distance learning, and medical contexts.more » « less
-
A highly structured evaluation plan is essential to implementing a successful science, technology, engineering, and math (STEM) intervention program designed to improve diversity in STEM education and careers. Effective program evaluations facilitate program improvement and sustainability goals. This article reviews paramount program components and discusses the importance of integrating program components in designing a dynamic evaluation plan. Evaluation plan development must involve dialogue with program team members and participants before, during, and after the STEM intervention. Translation of raw data to actionable intelligence using appropriate analytical techniques is indispensable to maximize the insights derived from an effective evaluation plan.more » « less
-
Microbiomics is a growing scientific field focusing on the quantification, characterization, and functional determination of complex microbial communities. Microbiomics utilizes microbiology, molecular biology, and bioinformatics analysis to study the composition of microorganisms and the inner workings of microbial populations in a distinct habitat and to assess microbe - derived genomic signatures, proteins, and metabolites. The current review examines microbiome research literature and extracts critical evidence highlighting current and potential benefits and applications of microbiome investigations in medicine, agriculture, and biotechnology. It focuses on how metatranscriptomic and metabolomic techniques have identified key molecules and mechanisms that have expanded our understanding of how microbial communities function in their natural ecosystem. Additional microbiomics research will continue to uncover essential microbial molecules and pathways of societal significance.more » « less
-
The sustainability of plant life is intimately connected to its evolution with microbial life. Based on experimental evidence, microbial assemblages benefit plants on molecular, cellular, and ecological levels. The plant microbiome or phytomicrobiome are the microbes closely associated with a particular plant species. Distinct plant microbial ecosystems are in the phyllosphere, rhizosphere, soil, and endosphere. Plant-associated microbes affect plants in numerous ways and participate in various physiological functions essential for the plant, including nutrient recycling, the breakdown and synthesis of critical molecules, and other phytoprotective functions. While studying plant-microbe interactions is not new, recent developments in metagenomic sequencing and high-throughput pathway identification techniques have allowed scientists to explore unculturable microbes associated with plants. This review primarily focuses on the significant role of the phytomicrobiome and describes the prevalent taxonomic units found in association with plants. Plants are suitable tractable model systems to study plant-microbe interactions and can be grown under different experimental conditions to examine other characteristics of the phytomicrobiome. This article also provides a systematic review of the current research on the phytomicrobiome. It explores the extent to which the phytomicrobiome participates in an essential process that promotes plant fitness and sustainabilityand reviews research that focuses on microbiome community shifts in response to abiotic and biotic stress. Genetic engineering of plant-associated microbes to enhance plant growth and protection is addressed. The use of nanofertilizers and phytomicrobiome transplantation to restore plant health and improve the success of agriculturally beneficial crops is also discussed.more » « less
-
Since the invention of the microscope, scientists have described microbial communities on living and non-living matter. In terms of human-associated microbes, scientists have documented the beneficial effects of the microbiota for many decades. Prophylactic effects include protection from pathogens, digestion potential, and the production of essential vitamins. However, recent high-throughput methodologies and analytical advances have accelerated microbiome science and our understanding of microbial diversity in living organisms. The microbiome denotes the complex network of all the microorganisms and microbial genes located in specific biotic or abiotic environments. We now realize the enormous diversity and functionality of the microbiota in humans and the endless benefits to health and disease. Dysbiosis facilitates the manufacture of various proinflammatory mediators, biochemical imbalances, and colonization of microbes associated with disease outcomes. Additional work is necessary to determine whether changes in the human microbiome are due to anthropogenic, genetic, or environmental variations. This review will present microbiome research studies focusing on human disease. The findings documented in this article offer optimism on the profound role microorganisms play in supporting human health and how pharmaceutical interactions targeting specific microbes can decrease the incidence of human disease caused by the ecological disturbance of the normal microbiota.more » « less
-
Microbiome research is a thriving field focused on characterizing the composition and functionality of microbial populations or microbiomes from a wide array of ecological niches. Microbiomes occupy living organisms, soil, the atmosphere, and bodies of water and exist in moderate and extreme climates. Understanding the intractable microbial universes in various environments is challenging and potentially rewarding to humankind. Historically, elucidating pathogenic microbes and their impact on host species has dominated microbiome-based studies. Moreover, a tiny percentage of microbes can be cultured using classical culturing methods. With advancements in high throughput experimentation and computational tools derived from microbial ecology, there is a driving force to gain insight into the entire microbial consortium from various environmental and biological locations. Metagenomics, the study of all the microbial genomes in a sample using sequencing techniques (e.g., 16s rRNA amplicon sequencing and shotgun sequencing), has so far dominated the types of investigations conducted in the field of microbiome research. More recently, however, researchers are becoming increasingly interested in better understanding the complex microbe-associated molecular network and specific protein and metabolite functions associated with microbial genetic potential. Metaproteomic, meta transcriptomics, and metabolomics are three potent methods to accumulate information about microbial proteins, messenger RNA, and metabolites in a microbial community. These methods are currently being applied in laboratory settings to address our general lack of understanding of microbe-microbe interactions and microbe-environment interactions.more » « less
-
The neoteric coronavirus, SARS-CoV-2, has been the single most prolific pathogenic threat to humans for nearly a century; thus, a comprehensive study of SARS-CoV-2 at the molecular level is paramount. The proposed research study will employ a safe, noninfectious pseudovirus-based cell entry protocol to elucidate undiscovered gene expression profiles, molecular networks, biologic mechanisms, and protein-protein interactions involved in SARS-CoV-2 entry into human cells.more » « less
An official website of the United States government

Full Text Available