skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205630

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the Local GroupL-Band Survey, a Karl G. Jansky Very Large Array (VLA) survey producing the highest-quality 21 cm and 1–2 GHz radio continuum images to date, for the six VLA-accessible, star-forming, Local Group galaxies. Leveraging the VLA’s spectral multiplexing power, we simultaneously survey the 21 cm line at high 0.4 km s−1velocity resolution, the 1–2 GHz polarized continuum, and four OH lines. For the massive spiral M31, the dwarf spiral M33, and the dwarf irregular galaxies NGC 6822, IC 10, IC 1613, and the Wolf–Lundmark–Melotte Galaxy, we use all four VLA configurations and the Green Bank Telescope to reach angular resolutions of <5″ (10–20 pc) for the 21 cm line with <1020cm−2column density sensitivity, and even sharper views (<2″; 5–10 pc) of the continuum. Targeting these nearby galaxies (D ≲ 1 Mpc) reveals a sharp, resolved view of the atomic gas, including 21 cm absorption, and continuum emission from supernova remnants and Hiiregions. These data sets can be used to test theories of the abundance and formation of cold clouds, the driving and dissipation of interstellar turbulence, and the impact of feedback from massive stars and supernovae. Here, we describe the survey design and execution, scientific motivation, data processing, and quality assurance. We provide a first look at and publicly release the wide-field 21 cm Hidata products for M31, M33, and four dwarf irregular targets in the survey, which represent some of the highest-physical-resolution 21 cm observations of any external galaxies beyond the LMC and SMC. 
    more » « less
    Free, publicly-accessible full text available July 17, 2026
  2. Abstract We present 0.6–3.2 pc resolution mid-infrared (MIR) JWST images at 7.7μm (F770W) and 21μm (F2100W) covering the main star-forming regions of two of the closest star-forming low-metallicity dwarf galaxies, NGC 6822 and Wolf–Lundmark–Melotte (WLM). The images of NGC 6822 reveal filaments, edge-brightened bubbles, diffuse emission, and a plethora of point sources. By contrast, most of the MIR emission in WLM is pointlike, with a small amount of extended emission. Compared to solar-metallicity galaxies, the ratio of 7.7μm intensity ( I ν F770W ), tracing polycyclic aromatic hydrocarbons (PAHs), to 21μm intensity ( I ν F2100W ), tracing small, warm dust grain emission, is suppressed in these low-metallicity dwarfs. Using Atacama Large Millimeter/submillimeter Array CO(2–1) observations, we find that detected CO intensity versus I ν F770W at ≈2 pc resolution in dwarfs follows a similar relationship to that at solar metallicity and lower resolution, while the CO versus I ν F2100W relationship in dwarfs lies significantly below that derived from solar-metallicity galaxies at lower resolution, suggesting more pronounced destruction of CO molecules at low metallicity. Finally, adding in Local Group L-Band Survey 21 cm Hiobservations from the Very Large Array, we find that I ν F2100W and I ν F770W versus total gas ratios are suppressed in NGC 6822 and WLM compared to solar-metallicity galaxies. In agreement with dust models, the level of suppression appears to be at least partly accounted for by the reduced galaxy-averaged dust-to-gas and PAH-to-dust mass ratios in the dwarfs. Remaining differences are likely due to spatial variations in dust model parameters, which should be an exciting direction for future work in local dwarf galaxies. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Abstract Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insights into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (Hi) absorption features in NGC 6822, a low-metallicity (0.2Z) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local GroupL-band Survey (LGLBS) enabled these detections, due to its high spatial (15 pc for Hiemission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline for searching for Hiabsorption at high angular resolution and extracting associated Hiemission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32 ± 6 K, a mean CNM column density of 3.1 × 1020cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking nondetections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hiabsorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hiemission. We also analyze a nearby sightline with deep, narrow Hiself-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hαemissions suggests a close link between the colder, denser Hiphase and star formation in NGC 6822. 
    more » « less