skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205663

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We analyze spatial spreading in a population model with logistic growth and chemorepulsion. In a parameter range of short-range chemo-diffusion, we use geometric singular perturbation theory and functional-analytic farfield-core decompositions to identify spreading speeds with marginally stable front profiles. In particular, we identify a sharp boundary between between linearly determined, pulled propagation, and nonlinearly determined, pushed propagation, induced by the chemorepulsion. The results are motivated by recent work on singular limits in this regime using PDE methods (Grietteet al2023J. Funct. Anal.285110115). 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  2. Abstract Motivated by the impact of worsening climate conditions on vegetation patches, we study dynamic instabilities in an idealised Ginzburg–Landau model. Our main results predict time instances of sudden drops in wavenumber and the resulting target states. The changes in wavenumber correspond to the annihilation of individual vegetation patches when resources are scarce and cannot support the original number of patches. Drops happen well after the primary pattern has destabilised at the Eckhaus boundary and key to distinguishing between the disappearance of 1,2 or more patches during the drop are complex spatio-temporal resonances in the linearisation at the unstable pattern. We support our results with numerical simulations and expect our results to be conceptually applicable universally near the Eckhaus boundary, in particular in more realistic models. 
    more » « less
  3. Abstract We investigate the slow passage through a pitchfork bifurcation in a spatially extended system, when the onset of instability is slowly varying in space. We focus here on the critical parameter scaling, when the instability locus propagates with speed , where is a small parameter that measures the gradient of the parameter ramp. Our results establish how the instability is mediated by a front traveling with the speed of the parameter ramp, and demonstrate scalings for a delay or advance of the instability relative to the bifurcation locus depending on the sign of , that is on the direction of propagation of the parameter ramp through the pitchfork bifurcation. The results also include a generalization of the classical Hastings–McLeod solution of the Painlevé‐II equation to Painlevé‐II equations with a drift term. 
    more » « less
  4. Abstract Pattern forming systems allow for a wealth of states, where wavelengths and orientation of patterns varies and defects disrupt patches of monocrystalline regions. Growth of patterns has long been recognized as a strong selection mechanism. We present here recent and new results on the selection of patterns in situations where the pattern-forming region expands in time. The wealth of phenomena is roughly organised in bifurcation diagrams that depict wavenumbers of selected crystalline states as functions of growth rates. We show how a broad set of mathematical and numerical tools can help shed light into the complexity of this selection process. 
    more » « less
  5. Free, publicly-accessible full text available October 26, 2026
  6. We establish sharp nonlinear stability results for fronts that describe the creation of a periodic pattern through the invasion of an unstable state. The fronts we consider are critical, in the sense that they are expected to mediate pattern selection from compactly supported or steep initial data. We focus on pulled fronts, that is, on fronts whose propagation speed is determined by the linearization about the unstable state in the leading edge, only. We present our analysis in the specific setting of the FitzHugh–Nagumo system, where pattern-forming uniformly translating fronts have recently been constructed rigorously [Carter and Scheel (2018)], but our methods can be used to establish nonlinear stability of pulled pattern-forming fronts in general reaction-diffusion systems. This is the first stability result for critical pattern-selecting fronts and provides a rigorous foundation for heuristic, universal wave number selection laws in growth processes based on a marginal stability conjecture. The main technical challenge is to describe the interaction between two separate modes of marginal stability, one associated with the spreading process in the leading edge, and one associated with the pattern in the wake. We develop tools based on far-field/core decompositions to characterize, and eventually control, the interaction between these two different types of diffusive modes. Linear decay rates are insufficient to close a nonlinear stability argument and we therefore need a sharper description of the relaxation in the wake of the front using a phase modulation ansatz. We control regularity in the resulting quasilinear equation for the modulated perturbation using nonlinear damping estimates. 
    more » « less
    Free, publicly-accessible full text available July 27, 2026
  7. We investigate the effect of spatial inhomogeneity on perfectly periodic, self-organized striped patterns in spatially extended systems. We demonstrate that inhomogeneities select a specific translate of the striped patterns and induce algebraically decaying, dipole-type farfield deformations. Phase shifts and leading order terms are determined by effective moments of the spatial inhomogeneity. Farfield decay is proportional to the derivatives of the Green’s function of an effective Laplacian. Technically, we use mode filters and conjugacies to an effective Laplacian to establish Fredholm properties of the linearization in Kondratiev spaces. Spatial localization in a contraction argument is gained through the use of an explicit deformation ansatz and a subtle cancellation in Bloch wave space. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026