skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205900

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Anisotropies of the Sunyaev–Zel’dovich (SZ) effect serve as a powerful probe of the thermal history of the universe. At high redshift, hot galactic outflows driven by supernovae (SNe) can inject a significant amount of thermal energy into the intergalactic medium, causing a strong y-type distortion of the cosmic microwave background (CMB) spectrum through inverse Compton scattering. The resulting anisotropies of the y-type distortion are sensitive to key physical properties of high-z galaxies pertaining to the launch of energetic SNe-driven outflows, such as the efficiency and the spatio-temporal clustering of star formation. We develop a simple analytic framework to calculate anisotropies of y-type distortion associated with SNe-powered outflows of galaxies at $$z\gt 6$$. We show that galactic outflows are likely the dominant source of thermal energy injection, compared to contributions from reionized bubbles and gravitational heating. We further show that next-generation CMB experiments such as LiteBIRD are likely to detect the contribution to y anisotropies from high-z galactic outflows through the cross-correlation with surveys of Lyman-break galaxies by e.g. the Roman Space Telescope. Our analysis and forecasts demonstrate that thermal SZ anisotropies can be a promising probe of SN feedback and outflows in early star-forming galaxies. 
    more » « less
  2. Abstract Dust is a key component of galaxies, but its properties during the earliest eras of structure formation remain elusive. Here we present a simple semi-analytic model of the dust distribution in galaxies atz≳ 5. We calibrate the free parameters of this model to estimates of the UV attenuation (using the IRX-βrelation between infrared emission and the UV spectral slope) and to ALMA measurements of dust emission. We find that the observed dust emission requires that most of the dust expected in these galaxies is retained (assuming a similar yield to lower-redshift sources), but if the dust is spherically distributed, the modest attenuation requires that it be significantly more extended than the stars. Interestingly, the retention fraction is larger for less massive galaxies in our model. However, the required radius is a significant fraction of the host's virial radius and is larger than the estimated extent of dust emission from stacked high-zgalaxies. These can be reconciled if the dust is distributed anisotropically, with typical covering fractions of ∼ 0.2–0.7 in bright galaxies and ≲ 0.1 in fainter ones. 
    more » « less
  3. ABSTRACT New JWST observations are revealing the first galaxies to be prolific producers of ionizing photons, which we argue gives rise to a tension between different probes of reionization. Over the last two decades, a consensus has emerged where star-forming galaxies are able to generate enough photons to drive reionization, given reasonable values for their number densities, ionizing efficiencies $$\xi _{\rm ion}$$ (per unit ultraviolet luminosity), and escape fractions $$f_{\rm esc}$$. However, some new JWST observations infer high values of $$\xi _{\rm ion}$$ during reionization and an enhanced abundance of earlier ($$z\gtrsim 9$$) galaxies, dramatically increasing the number of ionizing photons produced at high z. Simultaneously, recent low-z studies predict significant escape fractions for faint reionization-era galaxies. Put together, we show that the galaxies we have directly observed ($$M_{\rm UV} < -15$$) not only can drive reionization, but would end it too early. That is, our current galaxy observations, taken at face value, imply an excess of ionizing photons and thus a process of reionization in tension with the cosmic microwave background and Lyman-$$\alpha$$ forest. Considering galaxies down to $$M_{\rm UV}\approx -11$$, below current observational limits, only worsens this tension. We discuss possible avenues to resolve this photon budget crisis, including systematics in either theory or observations. 
    more » « less
  4. Abstract Bursty star formation—a key prediction for high-redshift galaxies from cosmological simulations explicitly resolving stellar feedback in the interstellar medium—has recently been observed to prevail among galaxies at redshiftz≳ 6. Line intensity mapping (LIM) of the 158μm [Cii] line as a star formation rate (SFR) indicator offers unique opportunities to tomographically constrain cosmic star formation at high redshift, in a way complementary to observations of individually detected galaxies. To understand the effects of bursty star formation on [Cii] LIM, which have remained unexplored in previous studies, we present an analytic modeling framework for high-zgalaxy formation and [Cii] LIM signals that accounts for bursty star formation histories induced by delayed supernova feedback. We use it to explore and characterize how bursty star formation can impact and thus complicate the interpretation of the [Cii] luminosity function and power spectrum. Our simple analytic model indicates that bursty star formation mainly affects low-mass galaxies by boosting their average SFR and [Cii] luminosity, and in the [Cii] power spectrum it can create a substantial excess in the large-scale clustering term. This distortion results in a power spectrum shape that cannot be explained by invoking a mass-independent logarithmic scatter. We conclude that burstiness must be accounted for when modeling and analyzing [Cii] data sets from the early Universe, and that in the extreme, the signature of burstiness may be detectable with first-generation experiments such as TIME, CONCERTO, and CCAT-DSS. 
    more » « less
  5. Abstract The first wave of observations with JWST has revealed a striking overabundance of luminous galaxies at early times (z> 10) compared to models of galaxies calibrated to pre-JWST data. Early observations have also uncovered a large population of supermassive black holes (SMBHs) atz> 6. Because many of the high-zobjects appear extended, the contribution of active galactic nuclei (AGNs) to the total luminosity has been assumed to be negligible. In this work, we use a semi-empirical model for assigning AGNs to galaxies to show that active galaxies can boost the stellar luminosity function (LF) enough to solve the overabundance problem while simultaneously remaining consistent with the observed morphologies of high-zsources. We construct a model for the composite AGN+galaxy LF by connecting dark matter halo masses to galaxy and SMBH masses and luminosities, accounting for dispersion in the mapping between host galaxy and SMBH mass and luminosity. By calibrating the model parameters — which characterize the M-M*relation — to a compilation ofz> 10 JWST UVLF data, we show that AGN emission can account for the excess luminosity under a variety of scenarios, including one where 10% of galaxies host BHs of comparable luminosities to their stellar components. Using a sample of simulated objects and real observations, we demonstrate that such low-luminosity AGNs can be `hidden' in their host galaxies and be missed in common morphological analyses. We find that for this explanation to be viable, our model requires a population of BHs that are overmassive (M/M*~ 10-2) with respect to their host galaxies compared to the local relation and are more consistent with the observed relation atz= 4-8. We explore the implications of this model for BH seed properties and comment on observational diagnostics necessary to further investigate this explanation. 
    more » « less
  6. ABSTRACT The high-redshift galaxy UV luminosity function (UVLF) has become essential for understanding the formation and evolution of the first galaxies. Yet, UVLFs only measure galaxy abundances, giving rise to a degeneracy between the mean galaxy luminosity and its stochasticity. Here, we show that upcoming clustering measurements with the JWST, as well as with Roman, will be able to break this degeneracy, even at redshifts z ≳ 10. First, we demonstrate that current Subaru Hyper Suprime-Cam (HSC) measurements of the galaxy bias at z ∼ 4–6 point to a relatively tight halo-galaxy connection, with low stochasticity. Then, we show that the larger UVLFs observed by JWST at z ≳ 10 can be explained with either a boosted average UV emission or an enhanced stochasticity. These two models, however, predict different galaxy biases, which are potentially distinguishable in JWST and Roman surveys. Galaxy-clustering measurements, therefore, will provide crucial insights into the connection between the first galaxies and their dark-matter haloes, and identify the root cause of the enhanced abundance of z ≳ 10 galaxies revealed with JWST during its first year of operations. 
    more » « less
  7. ABSTRACT Over the last three decades, photometric galaxy selection using the Lyman-break technique has transformed our understanding of the high-z Universe, providing large samples of galaxies at $$3 \lesssim z \lesssim 8$$ with relatively small contamination. With the advent of the JWST, the Lyman-break technique has now been extended to z ∼ 17. However, the purity of the resulting samples has not been tested. Here, we use a simple model, built on the robust foundation of the dark matter halo mass function, to show that the expected level of contamination rises dramatically at $$z \gtrsim 10$$, especially for luminous galaxies, placing stringent requirements on the selection process. The most luminous sources at $$z \gtrsim 12$$ are likely at least 10 000 times rarer than potential contaminants, so extensive spectroscopic follow-up campaigns may be required to identify a small number of target sources. 
    more » « less
  8. ABSTRACT Lyman α emitters (LAEs) are excellent probes of the reionization process, as they must be surrounded by large ionized bubbles in order to be visible during the reionization era. Large ionized regions are thought to correspond to overdense regions and may be protoclusters, making them interesting test-beds for early massive structures. Close associations containing several LAEs are often assumed to mark overdense, ionized bubbles. Here, we develop the first framework to quantify the ionization and density fields of high-z galaxy associations. We explore the interplay between (i) the large-scale density of a survey field, (ii) Poisson noise due to the small number density of bright sources at high redshifts (z ∼ 7), and (iii) the effects of the ionized fraction on the observation of LAEs. We use Bayesian statistics, a simple model of reionization, and a Monte Carlo simulation to construct a more comprehensive method for calculating the large-scale density of LAE regions than previous works. We find that Poisson noise has a strong effect on the inferred density of a region and show how the ionized fraction can be inferred. We then apply our framework to the strongest association yet identified: Hu et al. found 14 LAEs in a volume of ∼50 000 cMpc3 inside the COSMOS field at z ∼ 7. We show that this is most likely a 2.4σ overdensity inside of an ionized or nearly ionized bubble. We also show that this LAE association implies that the global ionized fraction is $$\bar{Q} = 0.59^{+0.10}_{-0.11}$$, within the context of a simple reionization model. 
    more » « less