skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dust in high-redshift galaxies: reconciling UV attenuation and IR emission
Abstract Dust is a key component of galaxies, but its properties during the earliest eras of structure formation remain elusive. Here we present a simple semi-analytic model of the dust distribution in galaxies atz≳ 5. We calibrate the free parameters of this model to estimates of the UV attenuation (using the IRX-βrelation between infrared emission and the UV spectral slope) and to ALMA measurements of dust emission. We find that the observed dust emission requires that most of the dust expected in these galaxies is retained (assuming a similar yield to lower-redshift sources), but if the dust is spherically distributed, the modest attenuation requires that it be significantly more extended than the stars. Interestingly, the retention fraction is larger for less massive galaxies in our model. However, the required radius is a significant fraction of the host's virial radius and is larger than the estimated extent of dust emission from stacked high-zgalaxies. These can be reconciled if the dust is distributed anisotropically, with typical covering fractions of ∼ 0.2–0.7 in bright galaxies and ≲ 0.1 in fainter ones.  more » « less
Award ID(s):
2205900
PAR ID:
10550061
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Cosmology and Astroparticle Physics
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2024
Issue:
09
ISSN:
1475-7516
Page Range / eLocation ID:
018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate dust attenuation and its dependence on viewing angle for 308 star-forming galaxies at 1.3 ≤z≤ 2.6 from the MOSFIRE Deep Evolution Field survey. We divide galaxies with a detected Hαemission line and coverage of Hβinto eight groups by stellar mass, star formation rate (SFR), and inclination (i.e., axis ratio), and we then stack their spectra. From each stack, we measure the Balmer decrement and gas-phase metallicity, and then we compute the medianAVand UV continuum spectral slope (β). First, we find that none of the dust properties (Balmer decrement,AV, orβ) varies with the axis ratio. Second, both stellar and nebular attenuation increase with increasing galaxy mass, showing little residual dependence on SFR or metallicity. Third, nebular emission is more attenuated than stellar emission, and this difference grows even larger at higher galaxy masses and SFRs. Based on these results, we propose a three-component dust model in which attenuation predominantly occurs in star-forming regions and large, dusty star-forming clumps, with minimal attenuation in the diffuse ISM. In this model, nebular attenuation primarily originates in clumps, while stellar attenuation is dominated by star-forming regions. Clumps become larger and more common with increasing galaxy mass, creating the above mass trends. Finally, we argue that a fixed metal yield naturally leads to mass regulating dust attenuation. Infall of low-metallicity gas increases the SFR and lowers the metallicity, but leaves the dust column density mostly unchanged. We quantify this idea using the Kennicutt–Schmidt and fundamental metallicity relations, showing that galaxy mass is indeed the primary driver of dust attenuation. 
    more » « less
  2. Abstract Supernovae (SNe) may be the dominant channel by which dust grains accumulate in galaxies during the first Gyr of cosmic time as formation channels important for lower-redshift galaxies, e.g., asymptotic giant branch stars and grain growth, may not have had sufficient time to take over. SNe produce fewer small grains, leading to a flatter attenuation law. In this work, we fit observations of 138 spectroscopically confirmedz > 6 galaxies adopting standard spectral energy distribution (SED) modeling assumptions and compare standard attenuation law prescriptions to a flat attenuation law. Compared to SMC dust, flat attenuation close to what may be expected from dust produced in SNe yields up to 0.5 mag higherAVand 0.4 dex larger stellar masses. It also finds better fits to the rest-frame UV photometry with lower χ UV 2 , allowing the observed UV luminosities taken from the models to be fainter by 0.2 dex on average. The systematically fainter observed UV luminosities for fixed observed photometry could help resolve current tension between the ionizing photon production implied by JWST observations and the redshift evolution of the neutral hydrogen fraction. Given these systematic effects and the physical constraint of cosmic time itself, fairly flat attenuation laws that could represent the properties of dust grains produced by SNe should be a standard consideration in fitting to the SEDs ofz > 6 galaxies. 
    more » « less
  3. Abstract We investigate the relationship between dust attenuation and stellar mass (M*) in star-forming galaxies over cosmic time. For this analysis, we compare measurements from the MOSFIRE Deep Evolution Field survey atz∼ 2.3 and the Sloan Digital Sky Survey (SDSS) atz∼ 0, augmenting the latter optical data set with both UV Galaxy Evolution Explorer (GALEX) and mid-infrared Wide-field Infrared Survey Explorer (WISE) photometry from the GALEX-SDSS-WISE Catalog. We quantify dust attenuation using both spectroscopic measurements of Hαand Hβemission lines, and photometric measurements of the rest-UV stellar continuum. The Hα/Hβratio is used to determine the magnitude of attenuation at the wavelength of Hα,A. Rest-UV colors and spectral energy distribution fitting are used to estimateA1600, the magnitude of attenuation at a rest wavelength of 1600 Å. As in previous work, we find a lack of significant evolution in the relation between dust attenuation andM*over the redshift rangez∼ 0 toz∼ 2.3. Folding in the latest estimates of the evolution ofMdust, (Mdust/Mgas), and gas surface density at fixedM*, we find that the expectedMdustand dust mass surface density are both significantly higher atz∼ 2.3 than atz∼ 0. These differences appear at odds with the lack of evolution in dust attenuation. To explain the striking constancy in attenuation versusM*, it is essential to determine the relationship between metallicity and (Mdust/Mgas), the dust mass absorption coefficient and dust geometry, and the evolution of these relations and quantities fromz∼ 0 toz∼ 2.3. 
    more » « less
  4. Abstract The observed prevalence of galaxies exhibiting bursty star formation histories (SFHs) atz≳ 6 has created new challenges and opportunities for understanding their formation pathways. The degenerate effects of the efficiency and burstiness of star formation on the observed UV luminosity function are separable by galaxy clustering. However, quantifying the timescales of burstiness requires more than just the continuum UV measurements. Here we develop a flexible semi-analytic framework for modeling both the amplitude of star formation rate (SFR) variations and their temporal correlation, from which the luminosity function and clustering can be derived for SFR indicators tracing different characteristic timescales (e.g., UV continuum and Hα luminosities). Based on this framework, we study the prospect of using galaxy summary statistics to distinguish models where SFR fluctuations are prescribed by different power spectral density (PSD) forms. Using the Fisher matrix approach, we forecast the constraints on parameters in our PSD-based model that can be extracted from mock JWST observations of the UV and Hαluminosity functions and clustering bias factors atz∼ 6. If potential confusion due to e.g., dust attenuation and stellar population effects can be properly quantified, these results imply the possibility of probing the burstiness of high-zgalaxies with one-point and two-point statistics and highlight the benefits of combining long-term and short-term SFR tracers. Our flexible framework can be readily extended to characterize the SFH of high-redshift galaxies with a wider range of observational diagnostics. 
    more » « less
  5. Abstract We present Keck Cosmic Web Imager integral-field unit observations around extended Lyαhalos of 27 typical star-forming galaxies with redshifts 2.0 <z< 3.2 drawn from the MOSFIRE Deep Evolution Field survey. We examine the average Lyαsurface brightness profiles in bins of star formation rate (SFR), stellar mass (M*), age, stellar continuum reddening, SFR surface density (ΣSFR), and ΣSFRnormalized by stellar mass (ΣsSFR). The scale lengths of the halos correlate with stellar mass, age, and stellar continuum reddening and anticorrelate with SFR, ΣSFR, and ΣsSFR. These results are consistent with a scenario in which the down-the-barrel fraction of Lyαemission is modulated by the low-column-density channels in the interstellar medium, and in which the neutral gas covering fraction is related to the physical properties of the galaxies. Specifically, we find that this covering fraction increases with stellar mass, age, andE(B−V) and decreases with SFR, ΣSFR, and ΣsSFR. We also find that the resonantly scattered Lyαemission suffers greater attenuation than the (nonresonant) stellar continuum emission, and that the difference in attenuation increases with stellar mass, age, and stellar continuum reddening, and decreases with ΣsSFR. These results imply that more reddened galaxies have more dust in their circumgalactic medium. 
    more » « less