skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2206052

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The surface-intensified, poleward-flowing Gulf Stream (GS) encounters the equatorward-flowing Deep Western Boundary Current (DWBC) at 36° N off Cape Hatteras. In this study, daily output from a data-assimilative, high-resolution (800 m), regional ocean reanalysis was examined to quantify variability in the velocity structure of the GS and DWBC during 2017–2018. The validity of this reanalysis was confirmed with independent observations of ocean velocity and density that demonstrate a high level of realism in the model’s representation of the regional circulation. The model’s daily velocity time series across a transect off Cape Hatteras was examined using rotated Empirical Orthogonal Function analysis, and analysis suggests three leading modes that characterize the variability of the western boundary currents throughout the water column. The first mode, related to meandering of the GS current, accounts for 55.3% of the variance, followed by a “wind-forced mode”, which accounts for 12.5% of the variance. The third mode, influenced by the DWBC and upper-ocean eddies, accounts for 7.1% of the variance. 
    more » « less