Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We have performed numerical calculations of a binary interacting with a gas disk, using 11 different numerical methods and a standard binary−disk setup. The goal of this study is to determine whether all codes agree on a numerically converged solution and to determine the necessary resolution for convergence and the number of binary orbits that must be computed to reach an agreed-upon relaxed state of the binary−disk system. We find that all codes can agree on a converged solution (depending on the diagnostic being measured). The zone spacing required for most codes to reach a converged measurement of the torques applied to the binary by the disk is roughly 1% of the binary separation in the vicinity of the binary components. For our disk model to reach a relaxed state, codes must be run for at least 200 binary orbits, corresponding to about a viscous time for our parameters, 0.2(a2ΩB/ν) binary orbits, whereνis the kinematic viscosity. The largest discrepancies between codes resulted from the dimensionality of the setup (3D vs. 2D disks). We find good agreement in the total torque on the binary between codes, although the partition of this torque between the gravitational torque, orbital accretion torque, and spin accretion torque depends sensitively on the sink prescriptions employed. In agreement with previous studies, we find a modest difference in torques and accretion variability between 2D and 3D disk models. We find cavity precession rates to be appreciably faster in 3D than in 2D.more » « less
-
Abstract Many studies have recently documented the orbital response of eccentric binaries accreting from thin circumbinary disks, characterizing the change in the binary semimajor axis and eccentricity. We extend these calculations to include the precession of the binary’s longitude of periapse induced by the circumbinary disk, and we characterize this precession continuously with binary eccentricityebfor equal mass components. This disk-induced apsidal precession is prograde with a weak dependence on the binary eccentricity wheneb≲ 0.4 and decreases approximately linearly foreb≳ 0.4; yet at allebbinary precession is faster than the rates of change to the semimajor axis and eccentricity by an order of magnitude. We estimate that such precession effects are likely most important for subparsec separated binaries with masses ≲107M⊙, like LISA precursors. We find that accreting, equal-mass LISA binaries withM< 106M⊙(and the most massiveM∼ 107M⊙binaries out toz∼ 3) may acquire a detectable phase offset due to the disk-induced precession. Moreover, disk-induced precession can compete with general relativistic precession in a vacuum, making it important for observer-dependent electromagnetic searches for accreting massive binaries—like Doppler boost and binary self-lensing models—after potentially only a few orbital periods.more » « less
An official website of the United States government
