skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Santa Barbara Binary−disk Code Comparison
Abstract We have performed numerical calculations of a binary interacting with a gas disk, using 11 different numerical methods and a standard binary−disk setup. The goal of this study is to determine whether all codes agree on a numerically converged solution and to determine the necessary resolution for convergence and the number of binary orbits that must be computed to reach an agreed-upon relaxed state of the binary−disk system. We find that all codes can agree on a converged solution (depending on the diagnostic being measured). The zone spacing required for most codes to reach a converged measurement of the torques applied to the binary by the disk is roughly 1% of the binary separation in the vicinity of the binary components. For our disk model to reach a relaxed state, codes must be run for at least 200 binary orbits, corresponding to about a viscous time for our parameters, 0.2(a2ΩB/ν) binary orbits, whereνis the kinematic viscosity. The largest discrepancies between codes resulted from the dimensionality of the setup (3D vs. 2D disks). We find good agreement in the total torque on the binary between codes, although the partition of this torque between the gravitational torque, orbital accretion torque, and spin accretion torque depends sensitively on the sink prescriptions employed. In agreement with previous studies, we find a modest difference in torques and accretion variability between 2D and 3D disk models. We find cavity precession rates to be appreciably faster in 3D than in 2D.  more » « less
Award ID(s):
2206299 2006176
PAR ID:
10527826
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
970
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 156
Size(s):
Article No. 156
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We examine the geometry of the post–asymptotic giant branch (AGB) star binary AC Her and its circumbinary disk. We show that the observations describe a binary orbit that is perpendicular to the disk with an angular momentum vector that is within 9° of the binary eccentricity vector, meaning that the disk is close to a stable polar alignment. The most likely explanation for the very large inner radius of the dust is a planet within the circumbinary disk. This is therefore both the first reported detection of a polar circumbinary disk around a post-AGB binary and the first evidence of a polar circumbinary planet. We consider the dynamical constraints on the circumbinary disk size and mass. The polar circumbinary disk feeds circumstellar disks with gas on orbits that are highly inclined with respect to the binary orbit plane. The resulting circumstellar disk inclination could be anywhere from coplanar to polar depending upon the competition between the mass accretion and binary torques. 
    more » « less
  2. Abstract We perform a full 3D general relativistic magnetohydrodynamical (GRMHD) simulation of an equal-mass, spinning, binary black hole approaching merger, surrounded by a circumbinary disk and with a minidisk around each black hole. For this purpose, we evolve the ideal GRMHD equations on top of an approximated spacetime for the binary that is valid in every position of space, including the black hole horizons, during the inspiral regime. We use relaxed initial data for the circumbinary disk from a previous long-term simulation, where the accretion is dominated by am= 1 overdensity called the lump. We compare our new spinning simulation with a previous non-spinning run, studying how spin influences the minidisk properties. We analyze the accretion from the inner edge of the lump to the black hole, focusing on the angular momentum budget of the fluid around the minidisks. We find that minidisks in the spinning case have more mass over a cycle than the non-spinning case. However, in both cases we find that most of the mass received by the black holes is delivered by the direct plunging of material from the lump. We also analyze the morphology and variability of the electromagnetic fluxes, and we find they share the same periodicities of the accretion rate. In the spinning case, we find that the outflows are stronger than the non-spinning case. Our results will be useful to understand and produce realistic synthetic light curves and spectra, which can be used in future observations. 
    more » « less
  3. Abstract We analyze accretion-rate time series for equal-mass binaries in coplanar gaseous disks spanning a continuous range of orbital eccentricities up to 0.8 for both prograde and retrograde systems. The dominant variability timescales match those of previous investigations; the binary orbital period is dominant for prograde binaries withe≳ 0.1, with a 5 × longer “lump” period taking over fore≲ 0.1. This lump period fades and drops from 5 × to 4.5 × the binary period aseapproaches 0.1, where it vanishes. For retrograde orbits, the binary orbital period dominates ate≲ 0.55 and is accompanied by a 2 × longer timescale periodicity at higher eccentricities. The shape of the accretion-rate time series varies with binary eccentricity. For prograde systems, the orientation of an eccentric disk causes periodic trading of accretion between the binary components in a ratio that we report as a function of binary eccentricity. We present a publicly available tool,binlite, that can rapidly (≲0.01 s) generate templates for the accretion-rate time series onto either binary component for choice of binary eccentricity below 0.8. As an example use case, we build lightcurve models where the accretion rate through the circumbinary disk and onto each binary component sets contributions to the emitted specific flux. We combine these rest-frame, accretion-variability lightcurves with observer-dependent Doppler boosting and binary self-lensing. This allows a flexible approach to generating lightcurves over a wide range of binary and observer parameter space. We envisionbinliteas the access point to a living database that will be updated with state-of-the-art hydrodynamical calculations as they advance. 
    more » « less
  4. Animal locomotion is influenced by a combination of constituent joint torques (e.g., due to limb inertia and passive viscoelasticity), which determine the necessary muscular response to move the limb. Across animal size-scales, the relative contributions of these constituent joint torques affect the muscular response in different ways. We used a multi-muscle biomechanical model to analyze how passive torque components change due to an animal’s size-scale during locomotion. By changing the size-scale of the model, we characterized emergent muscular responses at the hip as a result of the changing constituent torque profile. Specifically, we found that activation phases between extensor and flexor torques to be opposite between small and large sizes for the same kinematic motion. These results suggest general principles of how animal size affects neural control strategies. Our modeled torque profiles show a strong agreement with documented hindlimb torque during locomotion and can provide insights into the neural organization and muscle activation behavior of animals whose motion has not been extensively documented. 
    more » « less
  5. Abstract Collapsars—rapidly rotating stellar cores that form black holes—can power gamma-ray bursts and are proposed to be key contributors to the production of heavy elements in the Universe via the rapid neutron capture process (r-process). Previous neutrino-transport collapsar simulations have been unable to unbind neutron-rich material from the disk. However, these simulations have not included sufficiently strong magnetic fields and the black hole (BH), both of which are essential for launching mass outflows. We presentνh-amr, a novel neutrino-transport general relativistic magnetohydrodynamic (νGRMHD) code, which we use to perform the first 3D globalνGRMHD collapsar simulations. We find a self-consistent formation of a weakly magnetized dense accretion disk, which has sufficient time to neutronize. Eventually, substantial magnetic flux accumulates near the BH, becomes dynamically important, leads to a magnetically arrested disk (MAD), and unbinds some of the neutron-rich material. However, the strong flux also hinders accretion, lowers density, and increases neutrino-cooling timescale, which prevents further disk neutronization. Typical collapsar progenitors with mass accretion rates, M ̇ 0.1 1 M s - 1 , do not produce significant neutron-rich (Ye < 0.25) ejecta. However, we find that MADs at higher mass accretion rates, M ̇ few M s - 1 (e.g., for more centrally concentrated progenitors), can unbindMej ≲ Mof neutron-rich ejecta. The outflows inflate a shocked cocoon that mixes with the infalling neutron-poor stellar gas and raises the final outflowYe; however, the finalr-process yield may be determined earlier at the point of neutron capture freeze-out. Future work will explore under what conditions more typical collapsar engines becomer-process factories. 
    more » « less