Strong gravitational lensing is a powerful probe of the distribution of matter on sub-kpc scales. It can be used to test the existence of completely dark sub-haloes surrounding galaxies, as predicted by the standard cold dark matter model, or to test alternative dark matter models. The constraining power of the method depends strongly on photometric and astrometric precision and accuracy. We simulate and quantify the capabilities of upcoming adaptive optics systems and advanced instruments on ground-based telescopes, focusing as an illustration on the Keck Telescope (OSIRIS + KAPA, LIGER + KAPA) and the Thirty Meter Telescope (TMT; IRIS + NFIRAOS). We show that these new systems will achieve dramatic improvements over current ones in both photometric and astrometric precision. Narrow line flux ratio errors below 2 per cent, and submilliarcsecond astrometric precision will be attainable for typical quadruply imaged quasars. With TMT, the exposure times required will be of order a few minutes per system, enabling the follow-up of 100–1000 systems expected to be discovered by the Rubin, Euclid, and Roman Telescopes.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT The flux ratios of gravitationally lensed quasars provide a powerful probe of the nature of dark matter. Importantly, these ratios are sensitive to small-scale structure, irrespective of the presence of baryons. This sensitivity may allow us to study the halo mass function even below the scales where galaxies form observable stars. For accurate measurements, it is essential that the quasar’s light is emitted from a physical region of the quasar with an angular scale of milliarcseconds or larger; this minimizes microlensing effects by stars within the deflector. The warm dust region of quasars fits this criterion, as it has parsec-size physical scales and dominates the spectral energy distribution of quasars at wavelengths greater than 10 μm. The JWST Mid-Infrared Instrument is adept at detecting redshifted light in this wavelength range, offering both the spatial resolution and sensitivity required for accurate gravitational lensing flux ratio measurements. Here, we introduce our survey designed to measure the warm dust flux ratios of 31 lensed quasars. We discuss the flux-ratio measurement technique and present results for the first target, DES J0405-3308. We find that we can measure the quasar warm dust flux ratios with 3 per cent precision. Our simulations suggest that this precision makes it feasible to detect the presence of 107 M⊙ dark matter haloes at cosmological distances. Such haloes are expected to be completely dark in cold dark matter models.
-
ABSTRACT One of the frontiers for advancing what is known about dark matter lies in using strong gravitational lenses to characterize the population of the smallest dark matter haloes. There is a large volume of information in strong gravitational lens images – the question we seek to answer is to what extent we can refine this information. To this end, we forecast the detectability of a mixed warm and cold dark matter scenario using the anomalous flux ratio method from strong gravitational lensed images. The halo mass function of the mixed dark matter scenario is suppressed relative to cold dark matter but still predicts numerous low-mass dark matter haloes relative to warm dark matter. Since the strong lensing signal receives a contribution from a range of dark matter halo masses and since the signal is sensitive to the specific configuration of dark matter haloes, not just the halo mass function, degeneracies between different forms of suppression in the halo mass function, relative to cold dark matter, can arise. We find that, with a set of lenses with different configurations of the main deflector and hence different sensitivities to different mass ranges of the halo mass function, the different forms of suppression of the halo mass function between the warm dark matter model and the mixed dark matter model can be distinguished with 40 lenses with Bayesian odds of 30:1.