skip to main content


Title: Probing dark matter with adaptive-optics based flux ratio anomalies: photometric and astrometric precision
ABSTRACT

Strong gravitational lensing is a powerful probe of the distribution of matter on sub-kpc scales. It can be used to test the existence of completely dark sub-haloes surrounding galaxies, as predicted by the standard cold dark matter model, or to test alternative dark matter models. The constraining power of the method depends strongly on photometric and astrometric precision and accuracy. We simulate and quantify the capabilities of upcoming adaptive optics systems and advanced instruments on ground-based telescopes, focusing as an illustration on the Keck Telescope (OSIRIS + KAPA, LIGER + KAPA) and the Thirty Meter Telescope (TMT; IRIS + NFIRAOS). We show that these new systems will achieve dramatic improvements over current ones in both photometric and astrometric precision. Narrow line flux ratio errors below 2 per cent, and submilliarcsecond astrometric precision will be attainable for typical quadruply imaged quasars. With TMT, the exposure times required will be of order a few minutes per system, enabling the follow-up of 100–1000 systems expected to be discovered by the Rubin, Euclid, and Roman Telescopes.

 
more » « less
Award ID(s):
1836016 2205100 2206315
PAR ID:
10507832
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
531
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 885-897
Size(s):
p. 885-897
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    More than 5000 extrasolar planets have already been detected. JWST and near-term ground-based telescopes like the Extremely Large Telescope (ELT), Giant Magellan Telescope (GMT), Thirty Meter Telescope (TMT), and upcoming telescopes such as the Nancy Grace Roman Space Telescope, Xuntian, and Ariel are designed to characterize the atmosphere of directly imaged Jovian planets. Here, we used five diverse machine learning algorithms to investigate how well broad-band filter photometric fluxes could initially characterize giant exoplanets. We use an established grid of 8813 reflected light model spectra of different metallicities, planet–star distances, and cloud properties to assess the performance of several machine learning algorithms on both noiseless and noisy data to provide classification and regression results as a function of signal to noise of the data. In all cases, the algorithms were tested on noisy validation data. The results show that the use of machine learning to characterize giant planets from reflected broad-band filter photometry provides a promising tool for initial characterization, with over 65 per cent accuracy in characterizing metallicity for signal-to-noise ratios (S/N) ≳ 30, over 80 per cent for cloud coverage for S/N ≳ 30. This approach will allow initial characterization for large surveys of giant exoplanets and prioritization for spectroscopy observations of a subset of these worlds.

     
    more » « less
  2. Abstract

    Primordial black holes (PBHs), theorized to have originated in the early Universe, are speculated to be a viable form of dark matter. If they exist, they should be detectable through photometric and astrometric signals resulting from gravitational microlensing of stars in the Milky Way. Population Synthesis for Compact-object Lensing Events, orPopSyCLE, is a simulation code that enables users to simulate microlensing surveys, and is the first of its kind to include both photometric and astrometric microlensing effects, which are important for potential PBH detection and characterization. To estimate the number of observable PBH microlensing events, we modifyPopSyCLEto include a dark matter halo consisting of PBHs. We detail our PBH population model, and demonstrate ourPopSyCLE+ PBH results through simulations of the Optical Gravitational Lensing Experiment-IV (OGLE-IV) and Nancy Grace Roman Space Telescope (Roman) microlensing surveys. We provide a proof-of-concept analysis for adding PBHs intoPopSyCLE, and thus include many simplifying assumptions, such asfDM, the fraction of dark matter composed of PBHs, andm¯PBH, mean PBH mass. Assumingm¯PBH=30M, we find ∼3.6fDMtimes as many PBH microlensing events than stellar evolved black hole events, a PBH average peak Einstein crossing time of ∼91.5 days, estimate on order of 102fDMPBH events within the 8 yr OGLE-IV results, and estimate Roman to detect ∼1000fDMPBH microlensing events throughout its planned microlensing survey.

     
    more » « less
  3. ABSTRACT

    Modified theories of gravity predict deviations from general relativity (GR) in the propagation of gravitational waves (GWs) across cosmological distances. A key prediction is that the GW luminosity distance will vary with redshift, differing from the electromagnetic (EM) luminosity distance due to varying effective Planck mass. We introduce a model-independent, data-driven approach to explore these deviations using multimessenger observations of dark standard sirens [binary black holes (BBH)]. By combining GW luminosity distance measurements from dark sirens with baryon acoustic oscillation measurements, BBH redshifts inferred from cross-correlation with spectroscopic or photometric galaxy surveys, and sound horizon measurements from the cosmic microwave background, we can make a data-driven test of GR (jointly with the Hubble constant) as a function of redshift. Using the multimessenger technique with the spectroscopic DESI galaxy survey, we achieve precise measurements of deviations in the effective Planck mass variation with redshift. For the Cosmic Explorer and Einstein Telescope (CEET), the best precision is approximately 3.6 per cent, and for LIGO–Virgo–KAGRA (LVK), it is 7.4 per cent at a redshift of $\rm {z = 0.425}$. Additionally, we can measure the Hubble constant with a precision of about 1.1 per cent from CEET and 7 per cent from LVK over 5 yr of observation with a 75 per cent duty cycle. We also explore the potential of cross-correlation with photometric galaxy surveys from the Rubin Observatory, extending measurements up to a redshift of $\rm {z \sim 2.5}$. This approach can reveal potential deviations from models affecting GW propagation using numerous dark standard sirens in synergy with DESI and the Rubin Observatory.

     
    more » « less
  4. Abstract The Gaia satellite is cataloging the astrometric properties of an unprecedented number of stars in the Milky Way with extraordinary precision. This provides a gateway for conducting extensive surveys of transient astrometric lensing events caused by dark compact objects. In this work, we establish a data analysis pipeline capable of searching for such events in the upcoming Gaia Data Release 4 (DR4). We use Gaia Early Data Release 3 (EDR3) and current dark matter and astrophysical black hole population models to create mock DR4 catalogs containing stellar trajectories perturbed by lensing. Our analysis of these mock catalogs suggests that Gaia DR4 will contain about 4 astrometric lensing events from astrophysical black holes at a 5 σ significance level. Furthermore, we project that our data analysis pipeline applied to Gaia DR4 will result in leading constraints on compact dark matter in the mass range 1–10 3   M ⊙ down to a dark matter fraction of about one percent. 
    more » « less
  5. ABSTRACT

    China Space Station Telescope (CSST) is a forthcoming powerful Stage IV space-based optical survey equipment. It is expected to explore a number of important cosmological problems in extremely high precision. In this work, we focus on investigating the constraints on neutrino mass and other cosmological parameters under the model of cold dark matter with a constant equation of state of dark energy (wCDM), using the mock data from the CSST photometric galaxy clustering and cosmic shear surveys (i.e. 3 × 2 pt). The systematics from galaxy bias, photometric redshift uncertainties, intrinsic alignment, shear calibration, baryonic feedback, non-linear, and instrumental effects are also included in the analysis. We generate the mock data based on the COSMOS catalogue considering the instrumental and observational effects of the CSST, and make use of the Markov chain Monte Carlo method to perform the constraints. Comparing to the results from current similar measurements, we find that CSST 3 × 2 pt surveys can improve the constraints on the cosmological parameters by one order of magnitude at least. We can obtain an upper limit for the sum of neutrino mass Σmν ≲ 0.36 (0.56) eV at 68 per cent (95 per cent) confidence level (CL), and Σmν ≲ 0.23 (0.29) eV at 68 per cent (95 per cent) CL if we ignore the baryonic effect, which is comparable to the Planck results and much better than the current photometric surveys. This indicates that the CSST photometric surveys can provide stringent constraints on the neutrino mass and other cosmological parameters, and the results also can be further improved by including data from other kinds of CSST cosmological surveys.

     
    more » « less