skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2206424

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The solar corona is much hotter than lower layers of the solar atmosphere—the photosphere and chromosphere. The coronal temperature is up to 1 MK in quiet Sun areas, while up to several megakelvins in active regions, which implies a key role of the magnetic field in coronal heating. This means that understanding coronal heating requires reliable modeling of the underlying 3D magnetic structure of an active region validated by observations. Here, we employ synergy between 3D modeling, optically thick gyroresonant microwave emission, and optically thin EUV emission to (i) obtain and validate the best magnetothermal model of the active region and (ii) disentangle various components of the EUV emission known as diffuse component, bright loops, open-field regions, and “moss” component produced at the transition region. Surprisingly, the best thermal model corresponds to high-frequency energy release episodes, similar to a steady-state heating. Our analysis did not reveal significant deviations of the elemental abundances from the standard coronal values. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  2. Abstract Despite decades of research, the fundamental processes involved in the initiation and acceleration of solar eruptions remain not fully understood, making them long-standing and challenging problems in solar physics. Recent high-resolution observations by the Goode Solar Telescope have revealed small-scale magnetic flux emergence in localized regions of solar active areas prior to eruptions. Although much smaller in size than the entire active region, these emerging fluxes reached strengths of up to 2000 G. To investigate their impact, we performed data-constrained magnetohydrodynamic simulations. We find that while the small-scale emerging flux does not significantly alter the preeruption evolution, it dramatically accelerates the eruption during the main phase by enhancing the growth of torus instability, which emerges in the nonlinear stage. This enhancement occurs independently of the decay index profile. Our analysis indicates that even subtle differences in the preeruption evolution can strongly influence the subsequent dynamics, suggesting that small-scale emerging flux can play a critical role in accelerating solar eruptions. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  3. Abstract We investigated the initiation and the evolution of an X7.1-class solar flare observed in NOAA Active Region 13842 on 2024 October 1, based on a data-constrained magnetohydrodynamic (MHD) simulation. The nonlinear force-free field (NLFFF) extrapolated from the photospheric magnetic field about 1 hr before the flare was used as the initial condition for the MHD simulations. The NLFFF reproduces highly sheared field lines that undergo tether-cutting reconnection in the MHD simulation, leading to the formation of a highly twisted magnetic flux rope (MFR), which then erupts rapidly, driven by both torus instability and magnetic reconnection. This paper focuses on the dynamics of the MFR and its role in eruptions. We find that magnetic reconnection in the preeruption phase is crucial in the subsequent eruption driven by the torus instability. Furthermore, our simulation indicates that magnetic reconnection also directly enhances the torus instability. These results suggest that magnetic reconnection is not just a by-product of the eruption due to reconnecting of postflare arcade, but also plays a significant role in accelerating the MFR during the eruption. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026
  4. Abstract The dynamic structures of solar filaments prior to solar flares provide important physical clues about the onset of solar eruptions. Observations of those structures under subarcsecond resolution with high cadence are rare. We present high-resolution observations covering preeruptive and eruptive phases of two C-class solar flares, C5.1 (SOL2022-11-14T17:29) and C5.1 (SOL2022-11-14T19:29), obtained by the Goode Solar Telescope at Big Bear Solar Observatory. Both flares are ejective, i.e., accompanied by coronal mass ejections (CMEs). High-resolution Hαobservations reveal details of the flares and some striking features, such as a filament peeling process: individual strands of thin flux tubes are separated from the main filament, followed shortly thereafter by a flare. The estimated flux of rising strands is in the order of 1017Mx, versus the 1019Mx of the entire filament. Our new finding may explain why photospheric magnetic fields and overall active region and filament structures as a whole do not have obvious changes after a flare, and why some CMEs have been traced back to the solar active regions with only nonerupting filaments, as the magnetic reconnection may only involve a very small amount of flux in the active region, requiring no significant filament eruptions. We suggest internal reconnection between filament threads, instead of reconnection to external loops, as the process responsible for triggering this peeling of threads that results in the two flares and their subsequent CMEs. 
    more » « less
    Free, publicly-accessible full text available February 4, 2026
  5. Abstract We present observations and analysis of an eruptive M1.5 flare (SOL2014-08-01T18:13) in NOAA active region (AR) 12127, characterized by three flare ribbons, a confined filament between ribbons, and rotating sunspot motions as observed by the Solar Dynamics Observatory. The potential field extrapolation model shows a magnetic topology involving two intersecting quasi-separatrix layers (QSLs) forming a hyperbolic flux tube (HFT), which constitutes the fishbone structure for the three-ribbon flare. Two of the three ribbons show separation from each other, and the third ribbon is rather stationary at the QSL footpoints. The nonlinear force-free field extrapolation model implies the presence of a magnetic flux rope (MFR) structure between the two separating ribbons, which was unclear in the observation. This suggests that the standard reconnection scenario for eruptive flares applies to the two ribbons, and the QSL reconnection for the third ribbon. We find rotational flows around the sunspot, which may have caused the eruption by weakening the downward magnetic tension of the MFR. The confined filament is located in the region of relatively strong strapping field. The HFT topology and the accumulation of reconnected magnetic flux in the HFT may play a role in holding it from eruption. This eruption scenario differs from the one typically known for circular ribbon flares, which is mainly driven by a successful inside-out eruption of filaments. Our results demonstrate the diversity of solar magnetic eruption paths that arises from the complexity of the magnetic configuration. 
    more » « less
  6. Abstract We report for the first time the detection of thermal free–free emission from post-flare loops at 34 GHz in images from the Nobeyama Radioheliograph. We studied eight loops, seven of which were from regions with an extremely strong coronal magnetic field reported by Fedenev et al. Loop emission was observed in a wide range of wavelength bands, up to soft X-rays, confirming their multitemperature structure and was associated with noise storm emission in metricλ. The comparison of the 17 GHz emission with that at 34 GHz, after a calibration correction of the latter, showed that the emission was optically thin at both frequencies. We describe the structure and evolution of the loops and we computed their density, obtaining values for the top of the loops between 1 and 6 × 1010cm−3, noticeably varying from one loop to another and in the course of the evolution of the same loop system; these values have only a weak dependence on the assumed temperature, 2 × 106K in our case, as we are in the optically thin regime. Our density values are above those reported from EUV observations, which go up to about 1010cm−3. This difference could be due to the fact that different emitting regions are sampled in the two domains and/or due to the more accurate diagnostics in the radio range, which do not suffer from inherent uncertainties arising from abundances and non-LTE excitation/ionization equilibria. We also estimated the magnetic field in the loop tops to be in the range of 10–30 G. 
    more » « less
  7. Abstract Light bridges (LBs) are narrow structures dividing sunspot umbra, and their role in active region evolution is yet to be explored. We investigated the magnetic structure of the two LBs: a narrow LB (with width ∼810 km) and a considerably wider LB (2475 km) in the active region NOAA 12371. We employed: (1) the high-spatial-resolution spectropolarimetric data obtained by the Near InfraRed Imaging Spectropolarimeter (NIRIS) of the 1.6 m Goode Solar Telescope (GST) for studying the magnetic structure at the photosphere, and (2) the nonlinear force-free field (NLFFF) models, extrapolated from both the photospheric magnetogram from GST/NIRIS and from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, for studying the three-dimensional (3D) magnetic structure on a larger scale. Our observations reveal the presence of a field-free (or, more precisely, weak-field) region and the different velocity structures inside the two LBs. Analysis of the 3D NLFFF model shows a low-lying magnetic canopy as well as the enhanced current system above the LBs. The substantial difference between the LBs and the umbrae is found in the overall magnetic topology in that the field lines emanating from the two LBs are more twisted than that from the neighboring umbrae. 
    more » « less
  8. Abstract To facilitate the study of solar flares and active regions, we have created a modeling framework, the freely distributed GX Simulator IDL package, that combines 3D magnetic and plasma structures with thermal and nonthermal models of the chromosphere, transition region, and corona. Its object-based modular architecture, which runs on Windows, Mac, and Unix/Linux platforms, offers the ability to either import 3D density and temperature distribution models, or to assign numerically defined coronal or chromospheric temperatures and densities, or their distributions, to each individual voxel. GX Simulator can apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel, as well as compute and investigate the spatial and spectral properties of radio, (sub)millimeter, EUV, and X-ray emissions calculated from the model, and quantitatively compare them with observations. The package includes a fully automatic model production pipeline that, based on minimal users input, downloads the required SDO/HMI vector magnetic field data, performs potential or nonlinear force-free field extrapolations, populates the magnetic field skeleton with parameterized heated plasma coronal models that assume either steady-state or impulsive plasma heating, and generates non-LTE density and temperature distribution models of the chromosphere that are constrained by photospheric measurements. The standardized models produced by this pipeline may be further customized through specialized IDL scripts, or a set of interactive tools provided by the graphical user interface. Here, we describe the GX Simulator framework and its applications. 
    more » « less
  9. Abstract Magnetic reconnection is regarded as the mechanism for the rapid release of magnetic energy stored in active regions during solar flares, and quantitative measurements of the magnetic reconnection rate are essential for understanding solar flares. In the context of the standard two-ribbon flare model, we derive the coronal magnetic reconnection rate of the M6.5 flare on 2015 June 22 in two terms, reconnection flux change rate and reconnection electric field, both of which can be obtained from observations of the flare morphology. Data used include a sequence of chromospheric Hαimages with unprecedented resolution during the flare from the Visual Imaging Spectrometer of the Goode Solar Telescope (GST) at the Big Bear Solar Observatory and a preflare line-of-sight photospheric magnetogram from the GST Near-InfraRed Imaging Spectropolarimeter along with hard X-ray data from the Ramaty High Energy Solar Spectroscopic Imager. The temporal correlation between the magnetic reconnection rate and nonthermal emission is found, and the variation of the reconnection electric field is mainly determined by the ribbon speed, not by the local magnetic field encountered by the ribbon front. Spatially, the hard X-ray source overlaps with the location of the strongest electric field obtained at the same time. The ribbon motion shows abundant fine structures, including a local acceleration at the location of a light bridge with a weaker magnetic field. 
    more » « less
  10. Abstract A strong coronal magnetic field, when present, manifests itself as bright microwave sources at high frequencies produced by the gyroresonant (GR) emission mechanism in thermal coronal plasma. The highest frequency at which this emission is observed is proportional to the absolute value of the strongest coronal magnetic field on the line of sight. Although no coronal magnetic field larger than roughly 2000 G has been expected, recently a field at least 2 times larger has been reported. Here, we report on a search for and a statistical study of such strong coronal magnetic fields using high-frequency GR emission. A historic record of spatially resolved microwave observations at high frequencies, 17 and 34 GHz, is available from the Nobeyama RadioHeliograph for a period covering more than 20 yr (1995–2018). Here, we employ this data set to identify sources of bright GR emission at 34 GHz and perform a statistical analysis of the identified GR cases to quantify the strongest coronal magnetic fields during two solar cycles. We found that although active regions with a strong magnetic field are relatively rare (less than 1% of all active regions), they appear regularly on the Sun. These active regions are associated with prominent manifestations of solar activity. 
    more » « less