skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strongest Coronal Magnetic Fields in Solar Cycles 23 and 24: Probing, Statistics, and Implications
Abstract A strong coronal magnetic field, when present, manifests itself as bright microwave sources at high frequencies produced by the gyroresonant (GR) emission mechanism in thermal coronal plasma. The highest frequency at which this emission is observed is proportional to the absolute value of the strongest coronal magnetic field on the line of sight. Although no coronal magnetic field larger than roughly 2000 G has been expected, recently a field at least 2 times larger has been reported. Here, we report on a search for and a statistical study of such strong coronal magnetic fields using high-frequency GR emission. A historic record of spatially resolved microwave observations at high frequencies, 17 and 34 GHz, is available from the Nobeyama RadioHeliograph for a period covering more than 20 yr (1995–2018). Here, we employ this data set to identify sources of bright GR emission at 34 GHz and perform a statistical analysis of the identified GR cases to quantify the strongest coronal magnetic fields during two solar cycles. We found that although active regions with a strong magnetic field are relatively rare (less than 1% of all active regions), they appear regularly on the Sun. These active regions are associated with prominent manifestations of solar activity.  more » « less
Award ID(s):
2121632 2206424
PAR ID:
10395663
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
943
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 160
Size(s):
Article No. 160
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The solar corona is much hotter than lower layers of the solar atmosphere—the photosphere and chromosphere. The coronal temperature is up to 1 MK in quiet Sun areas, while up to several megakelvins in active regions, which implies a key role of the magnetic field in coronal heating. This means that understanding coronal heating requires reliable modeling of the underlying 3D magnetic structure of an active region validated by observations. Here, we employ synergy between 3D modeling, optically thick gyroresonant microwave emission, and optically thin EUV emission to (i) obtain and validate the best magnetothermal model of the active region and (ii) disentangle various components of the EUV emission known as diffuse component, bright loops, open-field regions, and “moss” component produced at the transition region. Surprisingly, the best thermal model corresponds to high-frequency energy release episodes, similar to a steady-state heating. Our analysis did not reveal significant deviations of the elemental abundances from the standard coronal values. 
    more » « less
  2. Abstract The solar corona is much hotter than the photosphere and chromosphere, but the physical mechanism responsible for heating the coronal plasma remains unidentified. The thermal microwave emission, which is produced in a strong magnetic field above sunspots, is a promising but barely exploited tool for studying the coronal magnetic field and plasma. We analyzed the microwave observations of eight solar active regions obtained with the Siberian Radioheliograph in the years 2022–2024 in the frequency range of 6–12 GHz. We produced synthetic microwave images based on various coronal heating models, and determined the model parameters that provided the best agreement with the observations. The observations and simulations strongly favor either a steady-state (continuous) plasma heating process or high-frequency heating by small energy release events with a short cadence. The average magnetic field strength in a coronal loop was found to decrease with the loop length, following a scaling law with the most probable index of about −0.55. In the majority of cases, the estimated volumetric heating rate was weakly dependent on the magnetic field strength and decreased with the coronal loop length following a scaling law with an index of about −2.5. Among the known theoretical heating mechanisms, the model based on wave transmission or reflection in coronal loops acting as resonance cavities was found to provide the best agreement with the observations. The obtained results did not demonstrate a significant dependence on the emission frequency in the considered range. 
    more » « less
  3. ABSTRACT Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission. 
    more » « less
  4. Solar flares are powered by a rapid release of energy in the solar corona, thought to be produced by the decay of the coronal magnetic field strength. Direct quantitative measurements of the evolving magnetic field strength are required to test this. We report microwave observations of a solar flare, showing spatial and temporal changes in the coronal magnetic field. The field decays at a rate of~5 Gauss per second for 2 minutes, as measured within a flare subvolume of ~1028cubic centimeters. This fast rate of decay implies a sufficiently strong electric field to account for the particle acceleration that produces the microwave emission. The decrease in stored magnetic energy is enough to power the solar flare, including the associated eruption, particle acceleration, and plasma heating. 
    more » « less
  5. Abstract We report for the first time the detection of thermal free–free emission from post-flare loops at 34 GHz in images from the Nobeyama Radioheliograph. We studied eight loops, seven of which were from regions with an extremely strong coronal magnetic field reported by Fedenev et al. Loop emission was observed in a wide range of wavelength bands, up to soft X-rays, confirming their multitemperature structure and was associated with noise storm emission in metricλ. The comparison of the 17 GHz emission with that at 34 GHz, after a calibration correction of the latter, showed that the emission was optically thin at both frequencies. We describe the structure and evolution of the loops and we computed their density, obtaining values for the top of the loops between 1 and 6 × 1010cm−3, noticeably varying from one loop to another and in the course of the evolution of the same loop system; these values have only a weak dependence on the assumed temperature, 2 × 106K in our case, as we are in the optically thin regime. Our density values are above those reported from EUV observations, which go up to about 1010cm−3. This difference could be due to the fact that different emitting regions are sampled in the two domains and/or due to the more accurate diagnostics in the radio range, which do not suffer from inherent uncertainties arising from abundances and non-LTE excitation/ionization equilibria. We also estimated the magnetic field in the loop tops to be in the range of 10–30 G. 
    more » « less