skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2206609

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using two-dimensional general relativistic resistive magnetohydrodynamic simulations, we investigate the properties of the sheath separating the black hole jet from the surrounding medium. We find that the electromagnetic power flowing through the jet sheath is comparable to the overall accretion power of the black hole. The sheath is an important site of energy dissipation as revealed by the copious appearance of reconnection layers and plasmoid chains. About 20% of the sheath power is dissipated between 2 and 10 gravitational radii. The plasma in the dissipative sheath moves along a nearly paraboloidal surface with transrelativistic bulk motions dominated by the radial component, whose dimensionless 4-velocity is ∼1.2 ± 0.5. In the frame moving with the mean (radially dependent) velocity, the distribution of stochastic bulk motions resembles a Maxwellian with an “effective bulk temperature” of ∼100 keV. Scaling the global simulation to Cygnus X-1 parameters gives a rough estimate of the Thomson optical depth across the jet sheath, ∼0.01–0.1, and it may increase in future magnetohydrodynamic simulations with self-consistent radiative losses. These properties suggest that the dissipative jet sheath may be a viable “coronal” region, capable of upscattering seed soft photons into a hard, nonthermal tail, as seen during the hard states of X-ray binaries and active galactic nuclei. 
    more » « less
  2. Abstract A variety of high-energy astrophysical phenomena are powered by the release—via magnetic reconnection—of the energy stored in oppositely directed fields. Single-fluid resistive magnetohydrodynamic (MHD) simulations with uniform resistivity yield dissipation rates that are much lower (by nearly 1 order of magnitude) than equivalent kinetic calculations. Reconnection-driven phenomena could be accordingly modeled in resistive MHD employing a nonuniform, “effective” resistivity informed by kinetic calculations. In this work, we analyze a suite of fully kinetic particle-in-cell (PIC) simulations of relativistic pair-plasma reconnection—where the magnetic energy is greater than the rest mass energy—for different strengths of the guide field orthogonal to the alternating component. We extract an empirical prescription for the effective resistivity, η eff = α B 0 J p / J p + 1 + e n t c p + 1 , whereB0is the reconnecting magnetic field strength,Jis the current density,ntis the lab-frame total number density,eis the elementary charge, andcis the speed of light. The guide field dependence is encoded inαandp, which we fit to PIC data. This resistivity formulation—which relies only on single-fluid MHD quantities—successfully reproduces the spatial structure and strength of nonideal electric fields and thus provides a promising strategy for enhancing the reconnection rate in resistive MHD simulations. 
    more » « less
  3. Abstract We study the magnetospheric evolution of a nonaccreting spinning black hole (BH) with an initially inclined split monopole magnetic field by means of 3D general relativistic magnetohydrodynamic simulations. This serves as a model for a neutron star (NS) collapse or a BH–NS merger remnant after the inherited magnetosphere has settled into a split monopole field creating a striped wind. We show that the initially inclined split monopolar current sheet aligns over time with the BH equatorial plane. The inclination angle evolves exponentially toward alignment, with an alignment timescale that is inversely proportional to the square of the BH angular velocity, where higher spin results in faster alignment. Furthermore, magnetic reconnection in the current sheet leads to exponential decay of event-horizon-penetrating magnetic flux with nearly the same timescale for all considered BH spins. In addition, we present relations for the BH mass and spin in terms of the period and alignment timescale of the striped wind. The explored scenario of a rotating, aligning, and reconnecting current sheet can potentially lead to multimessenger electromagnetic counterparts to a gravitational-wave event due to the acceleration of particles powering high-energy radiation, plasmoid mergers resulting in coherent radio signals, and pulsating emission due to the initial misalignment of the BH magnetosphere. 
    more » « less
  4. Abstract We study a relativistic collisionless electron–positron shock propagating into an unmagnetized ambient medium using 2D particle-in-cell simulations of unprecedented duration and size. The shock generates intermittent magnetic structures of increasingly larger size as the simulation progresses. Toward the end of our simulation, at around 26,000 plasma times, the magnetic coherence scale approachesλ∼ 100 plasma skin depths, both ahead and behind the shock front. We anticipate a continued growth ofλbeyond the time span of our simulation, as long as the shock accelerates particles to increasingly higher energies. The post-shock field is concentrated in localized patches, which maintain a local magnetic energy fractionεB∼ 0.1. Particles randomly sampling the downstream fields spend most of their time in low field regions (εB≪ 0.1) but emit a large fraction of the synchrotron power in the localized patches with strong fields (εB∼ 0.1). Our results have important implications for models of gamma-ray burst afterglows. 
    more » « less
  5. Abstract Magnetic reconnection is often invoked as a source of high-energy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with large-scale three-dimensional kinetic particle-in-cell simulations in electron–positron plasmas—that elucidates the physics governing the generation of power-law energy spectra in relativistic reconnection. Particles with Lorentz factorγ≳ 3σ(here,σis the magnetization) gain most of their energy in the inflow region, while meandering between the two sides of the reconnection layer. Their acceleration time is t acc γ η rec 1 ω c 1 20 γ ω c 1 , whereηrec≃ 0.06 is the inflow speed in units of the speed of light andωc=eB0/mcis the gyrofrequency in the upstream magnetic field. They leave the region of active energization aftertesc, when they get captured by one of the outflowing flux ropes of reconnected plasma. We directly measuretescin our simulations and find thattesc∼taccforσ≳ few. This leads to a universal (i.e.,σ-independent) power-law spectrum dN free / d γ γ 1 for the particles undergoing active acceleration, and dN / d γ γ 2 for the overall particle population. Our results help to shed light on the ubiquitous presence of power-law particle and photon spectra in astrophysical nonthermal sources. 
    more » « less
  6. Magnetic reconnection—a fundamental plasma physics process, where magnetic field lines of opposite polarity annihilate—is invoked in astrophysical plasmas as a powerful mechanism of nonthermal particle acceleration, able to explain fast-evolving, bright high-energy flares. Near black holes and neutron stars, reconnection occurs in the relativistic regime, in which the mean magnetic energy per particle exceeds the rest mass energy. This review reports recent advances in our understanding of the kinetic physics of relativistic reconnection:▪Kinetic simulations have elucidated the physics of plasma heating and nonthermal particle acceleration in relativistic reconnection (RR).▪The physics of radiative RR, with its self-consistent interplay between photons and reconnection-accelerated particles—a peculiarity of luminous, high-energy astrophysical sources—is the new frontier of research.▪RR plays a key role in global models of high-energy sources, in terms of both global-scale layers as well as reconnection sites generated as a by-product of local magnetohydrodynamic instabilities. We summarize themes of active investigation and future directions, emphasizing the role of upcoming observational capabilities, laboratory experiments, and new computational tools. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026
  7. We study the propagation of electromagnetic waves in tenuous plasmas, where the wave frequency ω 0 is much larger than the plasma frequency ω P . We show that in pair plasmas, nonlinear effects are weak for a 0 ω 0 / ω P , where a 0 is the wave strength parameter. In electron-proton plasmas, a more restrictive condition must be satisfied, namely, either a 0 1 / ω P τ 0 , where τ 0 is the duration of the radiation pulse, or a 0 1 . We derive the equations that govern the evolution of the pulse in the weakly nonlinear regime. Our results have important implications for the modeling of fast radio bursts. We argue that (i) millisecond duration bursts with a smooth profile must be produced in a proton-free environment, where nonlinear effects are weaker, and (ii) propagation through an electron-proton plasma near the source can imprint a submicrosecond variability on the burst profile. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  8. Abstract Magnetic reconnection can power spectacular high-energy astrophysical phenomena by producing nonthermal energy distributions in highly magnetized regions around compact objects. By means of two-dimensional fully kinetic particle-in-cell (PIC) simulations, we investigate relativistic collisionless plasmoid-mediated reconnection in magnetically dominated pair plasmas with and without a guide field. In X-points, where diverging flows result in a nondiagonal thermal pressure tensor, a finite residence time for particles gives rise to a localized collisionless effective resistivity. Here, for the first time for relativistic reconnection in a fully developed plasmoid chain, we identify the mechanisms driving the nonideal electric field using a full Ohm law by means of a statistical analysis based on our PIC simulations. We show that the nonideal electric field is predominantly driven by gradients of nongyrotropic thermal pressures. We propose a kinetic physics motivated nonuniform effective resistivity model that is negligible on global scales and becomes significant only locally in X-points. It captures the properties of collisionless reconnection with the aim of mimicking its essentials in nonideal magnetohydrodynamic descriptions. This effective resistivity model provides a viable opportunity to design physically grounded global models for reconnection-powered high-energy emission. 
    more » « less