We present a detection of 21 cm emission from largescale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emissionline galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1
Magnetic reconnection is often invoked as a source of highenergy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with largescale threedimensional kinetic particleincell simulations in electron–positron plasmas—that elucidates the physics governing the generation of powerlaw energy spectra in relativistic reconnection. Particles with Lorentz factor
 NSFPAR ID:
 10469597
 Publisher / Repository:
 DOI PREFIX: 10.3847
 Date Published:
 Journal Name:
 The Astrophysical Journal Letters
 Volume:
 956
 Issue:
 2
 ISSN:
 20418205
 Format(s):
 Medium: X Size: Article No. L36
 Size(s):
 Article No. L36
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract σ (LRG), 5.7σ (ELG), and 11.1σ (QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi ), defined as , where Ω_{Hi}is the cosmic abundance of H ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\equiv {10}^{3}\phantom{\rule{0.25em}{0ex}}{\mathrm{\Omega}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\left({b}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}+\u3008\phantom{\rule{0.25em}{0ex}}f{\mu}^{2}\u3009\right)$i ,b _{Hi}is the linear bias of Hi , and 〈f μ ^{2}〉 = 0.552 encodes the effect of redshiftspace distortions at linear order. We find for LRGs ( ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}={1.51}_{0.97}^{+3.60}$z = 0.84), for ELGs ( ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}={6.76}_{3.79}^{+9.04}$z = 0.96), and for QSOs ( ${\mathit{\ue22d}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}={1.68}_{0.67}^{+1.10}$z = 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv = − 66 ± 20 km s^{−1}for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz = 1.30 producing the highestredshift 21 cm intensity mapping measurement thus far. 
Abstract We measure the COtoH_{2}conversion factor (
α _{CO}) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from farinfrared emission as a tracer of the gas surface density and assuming a constant dusttometal ratio. In total, we have ∼790 and ∼610 independent measurements ofα _{CO}for CO (2–1) and (1–0), respectively. The mean values forα _{CO (2–1)}andα _{CO (1–0)}are and ${9.3}_{5.4}^{+4.6}$ , respectively. The COintensityweighted mean is 5.69 for ${4.2}_{2.0}^{+1.9}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{pc}}^{2}\phantom{\rule{0.25em}{0ex}}{(\mathrm{K}\phantom{\rule{0.25em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1})}^{1}$α _{CO (2–1)}and 3.33 forα _{CO (1–0)}. We examine howα _{CO}scales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dustmassweighted average interstellar radiation field strength ( ). Among them, $\overline{U}$ , Σ_{SFR}, and the integrated CO intensity ( $\overline{U}$W _{CO}) have the strongest anticorrelation with spatially resolvedα _{CO}. We provide linear regression results toα _{CO}for all quantities tested. At galaxyintegrated scales, we observe significant correlations betweenα _{CO}andW _{CO}, metallicity, , and Σ_{SFR}. We also find that $\overline{U}$α _{CO}in each galaxy decreases with the stellar mass surface density (Σ_{⋆}) in highsurfacedensity regions (Σ_{⋆}≥ 100M _{⊙}pc^{−2}), following the powerlaw relations and ${\alpha}_{\mathrm{CO}\phantom{\rule{0.25em}{0ex}}(2\u20131)}\propto {\mathrm{\Sigma}}_{\star}^{0.5}$ . The powerlaw index is insensitive to the assumed dusttometal ratio. We interpret the decrease in ${\alpha}_{\mathrm{CO}\phantom{\rule{0.25em}{0ex}}(1\u20130)}\propto {\mathrm{\Sigma}}_{\star}^{0.2}$α _{CO}with increasing Σ_{⋆}as a result of higher velocity dispersion compared to isolated, selfgravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inα _{CO}. The decrease inα _{CO}at high Σ_{⋆}is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburstlike” conversion factors. 
Abstract We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity of
, and velocity dispersion ${v}_{\mathrm{sys}}={31.5}_{1.2}^{+1.3}\phantom{\rule{0.33em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ . Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of ${\sigma}_{v}={6.1}_{0.9}^{+1.2}\phantom{\rule{0.33em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ , and resolve a dispersion of $[\mathrm{Fe}/\mathrm{H}]={2.87}_{0.07}^{+0.08}$σ _{[Fe/H]}=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metalpoor galaxies discovered thus far. Eri IV also has a somewhat unusual rightskewed metallicity distribution. For Cen I, we find a velocityv _{sys}= 44.9 ± 0.8 km s^{−1}, and velocity dispersion . We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersion ${\sigma}_{v}={4.2}_{0.5}^{+0.6}\phantom{\rule{0.33em}{0ex}}\mathrm{km}\phantom{\rule{0.25em}{0ex}}{\mathrm{s}}^{1}$ . We calculate the systemic proper motion, orbit, and the astrophysical Jfactor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are darkmatterdominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, rightskewed metallicity distribution, and high Jfactor make Eri IV an especially interesting candidate for further followup. ${\sigma}_{[\mathrm{Fe}/\mathrm{H}]}={0.38}_{0.05}^{+0.07}$ 
Abstract We measure the thermal electron energization in 1D and 2D particleincell simulations of quasiperpendicular, lowbeta (
β _{p}= 0.25) collisionless ion–electron shocks with mass ratiom _{i}/m _{e}= 200, fast Mach number –4, and upstream magnetic field angle ${\mathcal{M}}_{\mathrm{ms}}=1$θ _{Bn}= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, $\stackrel{\u02c6}{\mathit{n}}$ parallel electric potential jump, ΔB ϕ _{∥}, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the preshock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measure $\mathrm{\Delta}{\varphi}_{\parallel}/(0.5{m}_{\mathrm{i}}{{u}_{\mathrm{sh}}}^{2})\sim 0.1$ϕ _{∥}, including the use of de Hoffmann–Teller frame fields, agree to tensofpercent accuracy. Neglecting offdiagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ _{∥}in our lowβ _{p}shocks. We further focus on twoθ _{Bn}= 65° shocks: a ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$ ) case with a long, 30 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}1.8$d _{i}precursor of whistler waves along , and a $\stackrel{\u02c6}{\mathit{n}}$ ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}7$ ) case with a shorter, 5 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}3.2$d _{i}precursor of whistlers oblique to both and $\stackrel{\u02c6}{\mathit{n}}$ ;B d _{i}is the ion skin depth. Within the precursors,ϕ _{∥}has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the , ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$θ _{Bn}= 65° case,ϕ _{∥}shows a weak dependence on the electron plasmatocyclotron frequency ratioω _{pe}/Ω_{ce}, andϕ _{∥}decreases by a factor of 2 asm _{i}/m _{e}is raised to the true proton–electron value of 1836. 
Abstract We present a Keck/MOSFIRE restoptical composite spectrum of 16 typical gravitationally lensed starforming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z _{mean}= 2.30), all chosen independent of emissionline strength. These galaxies have a median stellar mass of and a median star formation rate of $\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.29}_{0.43}^{+0.51}$ . We measure the faint electrontemperaturesensitive [O ${\mathrm{S}\mathrm{F}\mathrm{R}}_{\mathrm{H}\alpha}^{\mathrm{m}\mathrm{e}\mathrm{d}}={2.25}_{1.26}^{+2.15}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{y}\mathrm{r}}^{1}$iii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statisticalonly) uncertainty spectrum. This yields a directmethod oxygen abundance of ( $12+\mathrm{log}{(\mathrm{O}/\mathrm{H})}_{\mathrm{direct}}={7.88}_{0.22}^{+0.25}$ ). We investigate the applicability at high ${0.15}_{0.06}^{+0.12}\phantom{\rule{0.33em}{0ex}}{Z}_{\odot}$z of locally calibrated oxygenbased strongline metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strongline ratio. At fixedM _{*}, our composite is well represented by thez ∼ 2.3 directmethod stellar mass—gasphase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixed $(\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.92}_{0.22}^{+0.31})$M _{*}and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ${n}_{e}={1}_{0}^{+215}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$ ) when considering the bootstrapped (statisticalonly) error spectrum. This result suggests that lowermass galaxies have lower densities than highermass galaxies at ${n}_{e}={1}_{0}^{+74}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$z ∼ 2.