Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Bivalve transmissible neoplasias (BTNs) are leukemia-like cancers found in at least 10 bivalve species, in which the cancer cells themselves transfer from one individual to another, spreading as an unusual form of infectious disease. Before the infectious etiology was known, there were reports of lethality and outbreaks of cancer in the soft-shell clam (Mya arenaria) on the east coast of North America. Using sensitive and specific qPCR assays, we followed the progression of BTN in naturally-infected soft-shell clams from Maine, USA. We observed variable outcomes, with about half of clams (9/21) progressing to high levels of cancer and death, about half exhibiting long-term non-progression (11/21), and a single animal showing regression of cancer. We also observe a significant decrease in survival in animals that progress to >10% cancer in their hemolymph, while we see no effect on survival in clams with BTN that are long-term non-progressors. As most bivalves do not physically contact each other, and BTN cells can survive in seawater, it has been proposed that BTN is spread through release of cancer cells into the water. We used qPCR to detect BTN-specific DNA in environmental DNA (eDNA) in the tanks of animals throughout this experiment. We show that cancer cell release can be detected in tank water of most clams with >24% cancer in their hemolymph, but not below this level. Cancer cell release is variable and occurs in bursts, but above 24% detection in eDNA correlates with progression of cancer in the hemolymph. This study demonstrates both the lethality of BTN and the presence of a block to the progression of BTN in a large portion of clams in a population with enzootic disease. This also further supports the hypothesis that BTN cells transmit through seawater and provides insights into the mechanisms of the transmission dynamics.more » « lessFree, publicly-accessible full text available April 26, 2026
-
ABSTRACT Transmissible cancers are clonal lineages of neoplastic cells able to infect multiple hosts, spreading through populations in the environment as an infectious disease. Transmissible cancers have been identified in Tasmanian devils, dogs, and bivalves. Several lineages of bivalve transmissible neoplasias (BTN) have been identified in multiple bivalve species. In 2019 in Puget Sound, Washington, USA, disseminated neoplasia was observed in basket cockles (Clinocardium nuttallii), a species that is important to the culture and diet of the Suquamish Tribe as well as other tribes with traditional access to the species. To test whether disseminated neoplasia in cockles is a previously unknown lineage of BTN, a nuclear locus was amplified from cockles from Agate Pass, Washington, and sequences revealed evidence of transmissible cancer in several individuals. We used a combination of cytology and quantitative PCR to screen collections of cockles from 11 locations in Puget Sound and along the Washington coastline to identify the extent of contagious cancer spread in this species. Two BTN lineages were identified in these cockles, with one of those lineages (CnuBTN1) being the most prevalent and geographically widespread. Within the CnuBTN1 lineage, multiple nuclear loci support the conclusion that all cancer samples form a single clonal lineage. However, the mitochondrial alleles in each cockle with CnuBTN1 are different from each other, suggesting mitochondrial genomes of this cancer have been replaced multiple times during its evolution, through horizontal transmission. The identification and analysis of these BTNs are critical for broodstock selection, management practices, and repopulation of declining cockle populations, which will enable continued cultural connection and dietary use of the cockles by Coast Salish Tribes.more » « less
-
ABSTRACT Bivalve transmissible neoplasia (BTN) is one of three known types of naturally transmissible cancer— cancers in which the whole cancer cells move from individual to individual, spreading through natural populations. BTN is a lethal leukemia-like cancer that has been observed throughout soft-shell clam (Mya arenaria) populations on the east coast of North America, with two distinct sublineages circulating at low enzootic levels in New England, USA, and Prince Edward Island, Canada. Major cancer outbreaks likely due toMya arenariaBTN (MarBTN) were reported in 1980s and the 2000s and the disease has been observed since the 1970s, but it has not been observed in populations of this clam species on the US west coast. In 2022, we collected soft-shell clams from several sites in Puget Sound, Washington, USA, and unexpectedly found high prevalence of BTN in two sites (Triangle Cove on Camano Island and near Stanwood in South Skagit Bay). Prevalence of BTN increased in subsequent years, reaching >75% in both sites in 2024, while it was not observed in other sites, suggesting the early stages of a severe disease outbreak following recent introduction. We observed that these cancer cells contain several somatic transposing insertion sites found only in the USA-sublineage of MarBTN, showing that it likely was recently transplanted from New England to this location. We then developed a sensitive environmental DNA (eDNA) assay, using qPCR to target somatic mutations in the MarBTN mitogenome, and showed that MarBTN can be detected in seawater at Triangle Cove, as well as several kilometers outside of the cove. We then used this assay to survey 50 sites throughout Puget Sound, confirming that the disease can be detected at high levels at Triangle Cove and South Skagit Bay, and showing that it extends beyond these known sites. However, while normal soft-shell clam mtDNA was widely detected, MarBTN was undetectable throughout most of Puget Sound and currently remains limited to the South Skagit Bay area and north Port Susan. These results identify a previously unknown severe outbreak of a transmissible cancer due to long-distance transplantation of disease from another ocean, and they demonstrate the utility of eDNA methods to track the spread of BTN through the environment.more » « lessFree, publicly-accessible full text available December 7, 2025
-
Abstract Transmissible cancers are infectious parasitic clones that metastasize to new hosts, living past the death of the founder animal in which the cancer initiated. We investigated the evolutionary history of a cancer lineage that has spread though the soft-shell clam (Mya arenaria) population by assembling a chromosome-scale soft-shell clam reference genome and characterizing somatic mutations in transmissible cancer. We observe high mutation density, widespread copy-number gain, structural rearrangement, loss of heterozygosity, variable telomere lengths, mitochondrial genome expansion and transposable element activity, all indicative of an unstable cancer genome. We also discover a previously unreported mutational signature associated with overexpression of an error-prone polymerase and use this to estimate the lineage to be >200 years old. Our study reveals the ability for an invertebrate cancer lineage to survive for centuries while its genome continues to structurally mutate, likely contributing to the evolution of this lineage as a parasitic cancer.more » « less
-
Disseminated neoplasia (DN) is a form of cancer in bivalve molluscs that can be transmissible between individuals and in some cases across species. Neoplastic cells are highly proliferative, and infection is usually lethal. Commercially valuable bivalve species (mussels, cockles, softshell clams, and oysters) are affected by outbreaks of DN, making disease diagnosis and mitigation an important issue in ecological restoration efforts and aquaculture. Basket cockles (Clinocardium nuttallii) are native to the North American Pacific coast from California to Alaska. Recent concern from some Coast Salish Tribes regarding an observed long-term decline in basket cockle populations in Puget Sound, WA has increased interest in monitoring efforts and subsequent collection for aquarium-reared broodstock. Disseminated neoplasia was detected in Puget Sound basket cockle populations, delaying aquaculture efforts so that potential broodstock could be assessed for the presence of DN. This study details a minimally invasive, inexpensive, nonlethal method for high-throughput screening for DN in adult basket cockles. The hemolymph smear screening method to diagnose DN in C. nuttallii can be applied at field sites at low financial cost. Results of the hemolymph smear technique were validated against whole tissue histology, the standard method for DN diagnosis. Due to the similar cellular morphologies of DN in different bivalve species, it is proposed that hemolymph histology can likely be applied for diagnosing DN in other bivalves.more » « less
An official website of the United States government
