skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2208944

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Birchler, James (Ed.)
    Abstract Ancient whole-genome duplications (WGDs) are believed to facilitate novelty and adaptation by providing the raw fuel for new genes. However, it is unclear how recent WGDs may contribute to evolvability within recent polyploids. Hybridization accompanying some WGDs may combine divergent gene content among diploid species. Some theory and evidence suggest that polyploids have a greater accumulation and tolerance of gene presence-absence and genomic structural variation, but it is unclear to what extent either is true. To test how recent polyploidy may influence pangenomic variation, we sequenced, assembled, and annotated twelve complete, chromosome-scale genomes of Camelina sativa, an allohexaploid biofuel crop with three distinct subgenomes. Using pangenomic comparative analyses, we characterized gene presence-absence and genomic structural variation both within and between the subgenomes. We found over 75% of ortholog gene clusters are core in Camelina sativa and <10% of sequence space was affected by genomic structural rearrangements. In contrast, 19% of gene clusters were unique to one subgenome, and the majority of these were Camelina-specific (no ortholog in Arabidopsis). We identified an inversion that may contribute to vernalization requirements in winter-type Camelina, and an enrichment of Camelina-specific genes with enzymatic processes related to seed oil quality and Camelina’s unique glucosinolate profile. Genes related to these traits exhibited little presence-absence variation. Our results reveal minimal pangenomic variation in this species, and instead show how hybridization accompanied by WGD may benefit polyploids by merging diverged gene content of different species. 
    more » « less
  2. Abstract Camelina (Camelina sativa), an allohexaploid species, is an emerging aviation biofuel crop that has been the focus of resurgent interest in recent decades. To guide future breeding and crop improvement efforts, the community requires a deeper comprehension of subgenome dominance, often noted in allopolyploid species, “alongside an understanding of the genetic diversity” and population structure of material present within breeding programs. We conducted population genetic analyses of a C. sativa diversity panel, leveraging a new genome, to estimate nucleotide diversity and population structure, and analyzed for patterns of subgenome expression dominance among different organs. Our analyses confirm that C. sativa has relatively low genetic diversity and show that the SG3 subgenome has substantially lower genetic diversity compared to the other two subgenomes. Despite the low genetic diversity, our analyses identified 13 distinct subpopulations including two distinct wild populations and others putatively representing founders in existing breeding populations. When analyzing for subgenome composition of long non-coding RNAs, which are known to play important roles in (a)biotic stress tolerance, we found that the SG3 subgenome contained significantly more lincRNAs compared to other subgenomes. Similarly, transcriptome analyses revealed that expression dominance of SG3 is not as strong as previously reported and may not be universal across all organ types. From a global analysis, SG3 “was only significant higher expressed” in flower, flower bud, and fruit organs, which is an important discovery given that the crop yield is associated with these organs. Collectively, these results will be valuable for guiding future breeding efforts in camelina. 
    more » « less
  3. Free, publicly-accessible full text available July 1, 2026
  4. Free, publicly-accessible full text available June 1, 2026
  5. Public genomic datasets like the 1000 Genomes project (1KGP), Human Genome Diversity Project (HGDP), and the Adolescent Brain Cognitive Development (ABCD) study are valuable public resources that facilitate scientific advancements in biology and enhance the scientific and economic impact of federally funded research projects. Regrettably, these datasets have often been developed and studied in ways that propagate outdated racialized and typological thinking, leading to fallacious reasoning among some readers that social and health disparities among the so-called races are due in part to innate biological differences between them. We highlight how this framing has set the stage for the racist exploitation of these datasets in two ways: First, we discuss the use of public biomedical datasets in studies that claim support for innate genetic differences in intelligence and other social outcomes between the groups identified as races. We further highlight recent instances of this which involve unauthorized access, use, and dissemination of public datasets. Second, we discuss thememification,use of simple figures meant for quick dissemination among lay audiences, of population genetic data to argue for a biological basis for purported human racial groups. We close with recommendations for scientists, to preempt the exploitation and misuse of their data, and for funding agencies, to better enforce violations of data use agreements. 
    more » « less