skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 15, 2025

Title: Allopolyploidy expanded gene content but not pangenomic variation in the hexaploid oilseed Camelina sativa
Abstract Ancient whole-genome duplications (WGDs) are believed to facilitate novelty and adaptation by providing the raw fuel for new genes. However, it is unclear how recent WGDs may contribute to evolvability within recent polyploids. Hybridization accompanying some WGDs may combine divergent gene content among diploid species. Some theory and evidence suggest that polyploids have a greater accumulation and tolerance of gene presence-absence and genomic structural variation, but it is unclear to what extent either is true. To test how recent polyploidy may influence pangenomic variation, we sequenced, assembled, and annotated twelve complete, chromosome-scale genomes of Camelina sativa, an allohexaploid biofuel crop with three distinct subgenomes. Using pangenomic comparative analyses, we characterized gene presence-absence and genomic structural variation both within and between the subgenomes. We found over 75% of ortholog gene clusters are core in Camelina sativa and <10% of sequence space was affected by genomic structural rearrangements. In contrast, 19% of gene clusters were unique to one subgenome, and the majority of these were Camelina-specific (no ortholog in Arabidopsis). We identified an inversion that may contribute to vernalization requirements in winter-type Camelina, and an enrichment of Camelina-specific genes with enzymatic processes related to seed oil quality and Camelina’s unique glucosinolate profile. Genes related to these traits exhibited little presence-absence variation. Our results reveal minimal pangenomic variation in this species, and instead show how hybridization accompanied by WGD may benefit polyploids by merging diverged gene content of different species.  more » « less
Award ID(s):
2109178 2029959 2208944
PAR ID:
10557799
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Editor(s):
Birchler, James
Publisher / Repository:
Oxford Academics
Date Published:
Journal Name:
GENETICS
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Camelina (Camelina sativa), an allohexaploid species, is an emerging aviation biofuel crop that has been the focus of resurgent interest in recent decades. To guide future breeding and crop improvement efforts, the community requires a deeper comprehension of subgenome dominance, often noted in allopolyploid species, “alongside an understanding of the genetic diversity” and population structure of material present within breeding programs. We conducted population genetic analyses of a C. sativa diversity panel, leveraging a new genome, to estimate nucleotide diversity and population structure, and analyzed for patterns of subgenome expression dominance among different organs. Our analyses confirm that C. sativa has relatively low genetic diversity and show that the SG3 subgenome has substantially lower genetic diversity compared to the other two subgenomes. Despite the low genetic diversity, our analyses identified 13 distinct subpopulations including two distinct wild populations and others putatively representing founders in existing breeding populations. When analyzing for subgenome composition of long non-coding RNAs, which are known to play important roles in (a)biotic stress tolerance, we found that the SG3 subgenome contained significantly more lincRNAs compared to other subgenomes. Similarly, transcriptome analyses revealed that expression dominance of SG3 is not as strong as previously reported and may not be universal across all organ types. From a global analysis, SG3 “was only significant higher expressed” in flower, flower bud, and fruit organs, which is an important discovery given that the crop yield is associated with these organs. Collectively, these results will be valuable for guiding future breeding efforts in camelina. 
    more » « less
  2. Wittkopp, Patricia (Ed.)
    Abstract Recent pangenome studies have revealed a large fraction of the gene content within a species exhibits presence-absence variation (PAV). However, coding regions alone provide an incomplete assessment of functional genomic sequence variation at the species level. Little to no attention has been paid to noncoding regulatory regions in pangenome studies, though these sequences directly modulate gene expression and phenotype. To uncover regulatory genetic variation, we generated chromosome-scale genome assemblies for thirty Arabidopsis thaliana accessions from multiple distinct habitats and characterized species level variation in Conserved Noncoding Sequences (CNS). Our analyses uncovered not only PAV and positional variation (PosV) but that diversity in CNS is non-random, with variants shared across different accessions. Using evolutionary analyses and chromatin accessibility data, we provide further evidence supporting roles for conserved and variable CNS in gene regulation. Additionally, our data suggests transposable elements contribute to CNS variation. Characterizing species-level diversity in all functional genomic sequences may later uncover previously unknown mechanistic links between genotype and phenotype. 
    more » « less
  3. Kubatko, Laura (Ed.)
    Abstract Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (Tamias canipes, Tamias cinereicollis, Tamias dorsalis, T. quadrivittatus, Tamias rufus, and Tamias umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population-genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite of rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group. [Cytonuclear discordance; hyridization; introgression, phylogenomics; SVDquartets; Tamias.] 
    more » « less
  4. Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaptation, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitate adaptation, we have completed chromosome-level de novo assemblies of all chromosomes for a recently formed hybrid yeast,Saccharomyces bayanusstrain CBS380, using Oxford Nanopore Technologies' MinION long-read sequencing. We characterize theS. bayanusgenome and compare it with its parent species,Saccharomyces uvarumandSaccharomyces eubayanus, and otherS. bayanusgenomes to better understand genome evolution after a relatively recent hybridization event. We observe multiple recombination events between the subgenomes in each chromosome, followed by loss of heterozygosity (LOH) in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes,S. bayanushas acquired many genes from other yeast species, primarily through the introgression ofSaccharomyces cerevisiae, such as those involved in the maltose metabolism. Finally, the patterns of recombination and LOH suggest an allotetraploid origin ofS. bayanus. The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaptation to maltose brewing environments and mitigated the maladaptive effect of hybridization. This paper describes the first in-depth study using long-read sequencing technology of anS. bayanushybrid genome, which may serve as an excellent reference for future studies of this important yeast and other yeast strains. 
    more » « less
  5. Summary Day neutrality, or insensitivity to photoperiod (day length), is an important domestication trait in many crop species. Although the oilseed cropCamelina sativahas been cultivated since the Neolithic era, day-neutral accessions have yet to be described. We sought to leverage genetic diversity in existing germplasms to identifyC. sativaaccessions with low photoperiod sensitivity for future engineering of this trait. We quantified variation in the photoperiod response across 161 accessions ofC. sativaby measuring hypocotyl length of four-day-old seedlings grown in long-day and short-day conditions, finding wide variation in photoperiod response. Similarly, soil-grown adult plants from selected accessions showed variation in photoperiod response in several traits; however, photoperiod responses in seedling and adult traits were not correlated, suggesting complex mechanistic underpinnings. Although RNA-seq experiments of the reference accession Licalla identified several differentially regulatedArabidopsissyntelogs involved in photoperiod response, includingCOL2, FT, LHYandWOX4, expression of these genes in the accessions did not correlate with differences in their photoperiod sensitivity. Taken together, we show that all tested accessions show some degree of photoperiod response, and that this trait is likely complex, involving several and separable seedling and adult traits. Significance StatementDay neutrality (photoperiod insensitivity) is a common trait in domesticated crops; however, the ancient oilseed cropCamelina sativahas remained photoperiod-sensitive, which likely limits seed yields. Here, we show that photoperiod sensitivity is conserved across manyC. sativacultivars, albeit to different degrees, and we establish that photoperiod sensitivity is a complex trait, which will require genetic engineering to achieve day neutrality. 
    more » « less