skip to main content


Search for: All records

Award ID contains: 2209144

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis

    Science is becoming increasingly interdisciplinary; the widespread emergence of dedicated interdisciplinary journals, conferences, and graduate programs reflects this trend. Interdisciplinary scientific events are extremely valuable in that they offer opportunities for career advancement, especially among early career researchers, for collaboration beyond traditional disciplinary echo chambers, and for the creative generation of innovative solutions to longstanding scientific problems. However, organizing such events can pose unique challenges due to the intentionality required to meaningfully break down the barriers that separate long-independent disciplines. In this paper, we propose five key strategies for organizing and hosting interdisciplinary scientific events. The recommendations offered here apply both to small symposia aiming to contribute an interdisciplinary component to a larger event and to broad interdisciplinary conferences hosting hundreds or thousands of attendees.

     
    more » « less
  2. Abstract

    Our knowledge of vertebrate functional evolution depends on inferences about joint function in extinct taxa. Without rigorous criteria for evaluating joint articulation, however, such analyses risk misleading reconstructions of vertebrate animal motion. Here we propose an approach for synthesizing raycast-based measurements of 3-D articular overlap, symmetry, and congruence into a quantitative “articulation score” for any non-interpenetrating six-degree-of-freedom joint configuration. We apply our methodology to bicondylar hindlimb joints of two extant dinosaurs (guineafowl, emu) and, through comparison with in vivo kinematics, find that locomotor joint poses consistently have high articulation scores. We then exploit this relationship to constrain reconstruction of a pedal walking stride cycle for the extinct dinosaurDeinonychus antirrhopus, demonstrating the utility of our approach. As joint articulation is investigated in more living animals, the framework we establish here can be expanded to accommodate additional joints and clades, facilitating improved understanding of vertebrate animal motion and its evolution.

     
    more » « less